Last active
January 20, 2017 00:39
-
-
Save jychstar/1516daff64c8f9e1a69dbbc0db662660 to your computer and use it in GitHub Desktop.
deep learning,assignment2
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
batch_size = 128 | |
hidden_size = 1024 | |
graph = tf.Graph() | |
with graph.as_default(): | |
# place holder for train set, constant for other set | |
X_train = tf.placeholder(tf.float32,shape=(None, 784)) | |
y_train = tf.placeholder(tf.float32, shape=(None, 10)) | |
# Variables. | |
weights1 = tf.Variable(tf.truncated_normal([784, hidden_size])) | |
biases1 = tf.Variable(tf.zeros([hidden_size])) | |
logits1 = tf.matmul(X_train, weights1) + biases1 | |
hidden1 = tf.nn.relu(logits1) | |
weights = tf.Variable(tf.truncated_normal([hidden_size, 10])) | |
biases = tf.Variable(tf.zeros([10])) | |
logits = tf.matmul(hidden1, weights) + biases | |
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_train, logits=logits)) | |
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss) | |
# Predictions for the training, validation, and test data. | |
correct_prediction = tf.equal(tf.argmax(logits,1), tf.argmax(y_train,1)) | |
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) | |
num_steps = 4001 | |
t0= time() | |
feed_valid = {X_train: valid_dataset, y_train: valid_labels} | |
feed_test = {X_train: test_dataset, y_train: test_labels} | |
with tf.Session(graph=graph) as s: | |
tf.global_variables_initializer().run() | |
print("Initialized") | |
for step in range(num_steps): | |
offset = (step * batch_size) % (train_labels.shape[0] - batch_size) | |
batch_data = train_dataset[offset:(offset + batch_size), :] | |
batch_labels = train_labels[offset:(offset + batch_size), :] | |
feed_train = {X_train: batch_data, y_train: batch_labels} | |
_, l, predictions = s.run([optimizer, loss, accuracy], feed_dict=feed_train) | |
if (step % 500 == 0): | |
print("Step = {0:4d}, loss = {1:5.2f},Valid accuracy ={2:g}". | |
format(step, l,accuracy.eval(feed_dict=feed_valid))) | |
print("Test accuracy: {0:g}".format(accuracy.eval(feed_dict=feed_test))) | |
print('Time cost:', time()-t0) # 88% at 47 seconds |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment