Skip to content

Instantly share code, notes, and snippets.

@jychstar
Created June 5, 2017 02:37
Show Gist options
  • Save jychstar/6f761edd553a65acee48008f5b918cc6 to your computer and use it in GitHub Desktop.
Save jychstar/6f761edd553a65acee48008f5b918cc6 to your computer and use it in GitHub Desktop.
import tensorflow as tf
x = tf.placeholder(tf.float32, shape=[None, 784], name = "input")
y_ = tf.placeholder(tf.float32, shape=[None, 10], name = "label") # labels
# Weight Initialization
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name = "weight")
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name = "bias")
# Convolution and Pooling
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME', name = "conv2d")
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME', name="max_pool")
with tf.name_scope("Convolutional_1"):
x_image = tf.reshape(x, [-1,28,28,1])
W_conv1 = weight_variable([5, 5, 1, 32]) # 2D patch sizes, input/output channels
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1, name="relu")
h_pool1 = max_pool_2x2(h_conv1)
with tf.name_scope("Convolutional_2"):
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2, name="relu")
h_pool2 = max_pool_2x2(h_conv2)
with tf.name_scope("Densely"):
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1, name="relu")
# Dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob, name = "dropout")
with tf.name_scope("Readout"):
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
with tf.name_scope("softmax"):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv, labels=y_))
with tf.name_scope("train"):
train_step = tf.train.AdamOptimizer(1e-4).minimize(loss) # more sophisticated ADAM optimizer
with tf.name_scope("accuracy"):
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
feed_test = {x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}
# execute phase ==========================================================
folder = 'board_expert'
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
writer = tf.summary.FileWriter(folder) # create writer
writer.add_graph(sess.graph)
print("graph is written into folder:", folder)
@jychstar
Copy link
Author

jychstar commented Jun 5, 2017

tensorboard --logdir "board_expert"

<img src="" alt="Smiley face" width="600">

@jychstar
Copy link
Author

jychstar commented Jun 5, 2017

Smiley face

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment