Created
July 14, 2014 14:54
-
-
Save jzakiya/710313b704bde266a8ab to your computer and use it in GitHub Desktop.
Find the nth prime (64-bit input/output) using a modified Segmented Sieve of Zakiya (SSoZ).
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
This C++ source file will compile to an executable program to | |
find the nth prime. It's foundation is the Sieve of Zakiya, and it | |
performs the Segmented Sieve of Zakiya (SSoZ) to find primes <= N. | |
This version is based on the P5 Strictly Prime (SP) Prime Generator. | |
Prime Genrators have the form: mod*k + ri; ri -> {1,r1..mod-1} | |
The residues ri are integers coprime to mod, i.e. gcd(ri,mod) = 1 | |
For P5, mod = 2*3*5 = 30 and the number of residues are | |
rescnt = (2-1)(3-1)(5-1) = 8, which are {1,7,11,13,17,19,23,29}. | |
On Linux use -O compiler flag to compile for optimum speed: | |
$ g++ -O nthprimessozp5cpp.cpp -o nthprimessozp5cpp | |
Then run executable: $ ./nthprimessozp5cpp <cr>, and enter nth value. | |
Input and output values are 64-bit. | |
Related code, papers, and tutorials, are downloadable here: | |
http://www.4shared.com/folder/TcMrUvTB/_online.html | |
Use of this code is free subject to acknowledgment of copyright. | |
Copyright (c) 2014 Jabari Zakiya -- jzakiya at gmail dot com | |
Version Date: 2014/07/14 | |
This code is provided under the terms of the | |
GNU General Public License Version 3, GPLv3, or greater. | |
License copy/terms are here: http://www.gnu.org/licenses/ | |
*/ | |
#include <cmath> | |
#include <vector> | |
#include <cstdlib> | |
#include <iostream> | |
#include <stdint.h> | |
using namespace std; | |
typedef uint64_t uint64; | |
char pbits[256] = { | |
8,7,7,6,7,6,6,5,7,6,6,5,6,5,5,4,7,6,6,5,6,5,5,4,6,5,5,4,5,4,4,3 | |
,7,6,6,5,6,5,5,4,6,5,5,4,5,4,4,3,6,5,5,4,5,4,4,3,5,4,4,3,4,3,3,2 | |
,7,6,6,5,6,5,5,4,6,5,5,4,5,4,4,3,6,5,5,4,5,4,4,3,5,4,4,3,4,3,3,2 | |
,6,5,5,4,5,4,4,3,5,4,4,3,4,3,3,2,5,4,4,3,4,3,3,2,4,3,3,2,3,2,2,1 | |
,7,6,6,5,6,5,5,4,6,5,5,4,5,4,4,3,6,5,5,4,5,4,4,3,5,4,4,3,4,3,3,2 | |
,6,5,5,4,5,4,4,3,5,4,4,3,4,3,3,2,5,4,4,3,4,3,3,2,4,3,3,2,3,2,2,1 | |
,6,5,5,4,5,4,4,3,5,4,4,3,4,3,3,2,5,4,4,3,4,3,3,2,4,3,3,2,3,2,2,1 | |
,5,4,4,3,4,3,3,2,4,3,3,2,3,2,2,1,4,3,3,2,3,2,2,1,3,2,2,1,2,1,1,0 | |
}; | |
char residues[9] = {1, 7, 11, 13, 17, 19, 23, 29, 31}; | |
// Global parameters | |
uint B; // segment byte size | |
uint KB; // segment resgroup size | |
uint mod = 30; // prime generator mod value | |
uint rescnt = 8; // number of residues for prime generator | |
uint pcnt; // number of primes from r1..sqrt(N) | |
uint64 primecnt; // number of primes <= N | |
uint64 *next; // pointer to array of primes first nonprimes | |
uint *primes; // pointer to array of primes <= sqrt(N) | |
char *seg; // pointer to seg[B] segment byte array | |
void sozP7(uint val) | |
{ | |
int md = 210; | |
int rscnt = 48; | |
int res[49] = { | |
1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67 | |
, 71, 73, 79, 83, 89, 97,101,103,107,109,113,121,127,131,137,139 | |
,143,149,151,157,163,167,169,173,179,181,187,191,193,197,199,209,211}; | |
int posn[210]; | |
for (int i=0; i < rscnt; i++) posn[res[i]] = i-1; | |
uint i, r, modk; | |
uint num = val-1 | 1; // if value even number then subtract 1 | |
uint k=num/md; modk = md*k; r=1; // kth residue group, base num value | |
while (num >= modk+res[r]) r++; // find last pc position <= num | |
uint maxprms = k*rscnt + r - 1; // maximum number of prime candidates | |
vector<char> prms(maxprms); // array of prime candidates set False | |
uint sqrtN = (uint) sqrt((double) num); | |
modk=0; r=0; k=0; | |
// sieve to eliminate nonprimes from small primes prms array | |
for (i=0; i < maxprms; i++){ | |
r++; if (r > rscnt) {r=1; modk += md; k++;} | |
if (prms[i]) continue; | |
uint res_r = res[r]; | |
uint prime = modk + res_r; | |
if (prime > sqrtN) break; | |
uint prmstep = prime * rscnt; | |
for (int ri=1; ri < (rscnt+1); ri++){ | |
uint prod = res_r * res[ri]; // residues cross-product | |
uint nonprm = (k*(prime + res[ri]) + prod/md)*rscnt; | |
nonprm += posn[prod % md]; // residue track value | |
for (; nonprm < maxprms; nonprm += prmstep) prms[nonprm]=true; | |
} | |
} | |
// the prms array now has all the positions for primes r1..N | |
// approximate primes array size; make greater than N/ln(N) | |
uint max = (double) ((num/log( (double) num) * 1.13)+8); | |
primes = new uint[max]; // allocate mem at runtime | |
pcnt = 1; | |
primes[0] = 7; // r1 prime for P5 | |
// extract prime numbers and count from prms into prims array | |
modk=0; r=0; | |
for (i=0; i < maxprms; i++){ | |
r++; if (r > rscnt) {r=1; modk +=md;} | |
if (!prms[i]) primes[pcnt++] = modk + res[r]; | |
} | |
} | |
void nextinit() | |
{ | |
char pos[30] = { | |
0,7,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,3,0,4,0,0,0,5,0,0,0,0,0,6}; | |
char k_row[64] = { | |
4, 3, 7, 6, 2, 1, 5, 0 | |
, 3, 7, 5, 0, 6, 2, 4, 1 | |
, 7, 5, 4, 1, 0, 6, 3, 2 | |
, 6, 0, 1, 4, 5, 7, 2, 3 | |
, 2, 6, 0, 5, 7, 3, 1, 4 | |
, 1, 2, 6, 7, 3, 4, 0, 5 | |
, 5, 4, 3, 2, 1, 0, 7, 6 | |
, 0, 1, 2, 3, 4, 5, 6, 7 | |
}; | |
char k_col[64] = { | |
1, 2, 2, 3, 4, 5, 6, 7 | |
, 2, 3, 4, 6, 6, 8,10,11 | |
, 2, 4, 5, 7, 8, 9,12,13 | |
, 3, 6, 7, 9,10,12,16,17 | |
, 4, 6, 8,10,11,14,18,19 | |
, 5, 8, 9,12,14,17,22,23 | |
, 6,10,12,16,18,22,27,29 | |
, 7,11,13,17,19,23,29,31 | |
}; | |
// for each prime store resgroup on each restrack for prime*(modk+ri) | |
for (uint j = 0; j < pcnt; ++j) { // for the pcnt primes r1..sqrt(N) | |
uint prime = primes[j]; // for each prime | |
uint64 k = (prime-2)/mod; // find the resgroup it's in | |
uint row = pos[prime % mod] * rescnt; // row start for k_row|col tables | |
for (uint r=0; r < rescnt; ++r) // for each residue value | |
next[k_row[row+r]*pcnt + j] = k*(prime+residues[r+1]) + k_col[row+r]; | |
} | |
} | |
void segsieve(uint Kn) | |
{ // for Kn resgroups in segment | |
for (uint b = 0; b < Kn; ++b) // for every byte in the segment | |
seg[b] = 0; // set every byte bit to prime (0) | |
for (uint r = 0; r < rescnt; ++r) { // for each ith (of 8) residues for P5 | |
uint biti = 1 << r; // set the ith residue track bit mask | |
uint row = r*pcnt; // set address to ith row in next[] | |
for (uint j = 0; j < pcnt; ++j) { // for each prime <= sqrt(N) for restrack | |
if (next[row+j] < Kn) { // if 1st mult resgroup index <= seg size | |
uint k = next[row+j]; // get its resgroup value | |
uint prime = primes[j]; // get the prime | |
for (; k < Kn; k += prime) // for each primenth byte < segment size | |
seg[k] |= biti; // set ith residue in byte as nonprime | |
next[row+j] = k - Kn; // 1st resgroup in next eligible segment | |
} | |
else next[row+j] -= Kn; // if 1st mult resgroup index > seg size | |
} | |
} | |
// count the primes in the segment | |
for (uint s = 0; s < Kn; ++s) // for the Kn resgroup bytes | |
primecnt += pbits[seg[s] & 0xff]; // count the '0' bits as primes | |
} | |
void printprms(uint Kn, uint64 Ki) | |
{ | |
// Extract and print the primes in each segment: | |
// recommend piping output to less: ./ssozpxxx | less | |
// can then use Home, End, Pgup, Pgdn keys to see primes | |
for (uint k = 0; k < Kn; ++k) // for Kn residues groups|bytes | |
for (uint r = 0; r < 8; ++r) // for each residue|bit in a byte | |
if (!(seg[k] & (1 << r))) // if it's '0' it's a prime | |
cout << " " << mod*(Ki+k) + residues[r+1]; | |
cout << "\n"; | |
} | |
main() | |
{ | |
cout << "Enter nth prime desired: "; | |
uint64 n; | |
cin >> n; | |
if (n < 4) { | |
if (n == 3) cout << n << "rd prime = " << n+2 << endl; | |
if (n == 2) cout << n << "nd prime = " << n+1 << endl; | |
if (n == 1) cout << n << "st prime = " << n+1 << endl; | |
return 0; | |
} | |
// approximate value of (>) nth prime to find primes up to | |
uint64 val = n*(log(n) + 0.74*log(log(n)))+3; | |
cout << "approximate nth prime is " << val << endl; | |
B = 262144; // L2D_CACHE_SIZE 256*1024 bytes, I5 cpu | |
KB = B; // number of segment resgroups | |
seg = new char[B]; // create segment array of B bytesize | |
//cout << "segment has "<< B << " bytes and " << KB << " residues groups\n"; | |
int r; | |
uint64 k, modk; | |
uint64 num = val-1 | 1; // if val even subtract 1 | |
k=num/mod; modk = mod*k; r=1; // kth residue group, base num value | |
while (num >= modk+residues[r]) r++; // find last pc position <= num | |
uint64 maxpcs =k*rescnt + r-1; // maximum number of prime candidates | |
uint64 Kmax = (num-2)/mod + 1; // maximum number of resgroups for val | |
//cout <<"prime candidates = "<< maxpcs <<"; resgroups = "<< Kmax << endl; | |
uint sqrtN = (uint) sqrt((double) num); | |
sozP7(sqrtN); // get pcnt and primes <= sqrt(nun) | |
//cout << "create next["<< rescnt << "x" << pcnt << "] array\n"; | |
next = new uint64[rescnt*pcnt]; // create the next[] array | |
nextinit(); // load with first nonprimes resgroups | |
primecnt = 3; // 2,3,5 the P5 excluded primes count | |
uint Kn = KB; // set sieve resgroups size to segment size | |
uint64 Ki = 0; // starting resgroup index for each segment | |
//cout << "perform segmented SoZ\n"; | |
for (; Ki < Kmax; Ki += KB) { // for KB size resgroup slices up to Kmax | |
if (Kmax-Ki < KB) Kn=Kmax-Ki; // set sieve resgroups size for last segment | |
segsieve(Kn); // sieve primes for current segment | |
if (primecnt >= n) break; // stop in segment that contains nth prime | |
} | |
//cout << "find prime " << n << ", current primecount is " << primecnt << endl; | |
uint64 nthprime = 0; // get last prime and primecnt <= val | |
modk = mod*(Ki-1+Kn); // mod for last resgroup in last segment | |
uint b = Kn-1; // num bytes to last resgroup in segment | |
r = rescnt-1; // from last restrack in resgroup | |
while (true) { // repeat until nth prime determined | |
if (!(seg[b] & 1 << r)) { // if restrack in byte[i] is prime | |
if (primecnt == n) { // if this is the nth prime | |
nthprime = modk+residues[r+1]; // store its value | |
break; // exit loop | |
} | |
primecnt--; // else reduce total primecnt | |
} // reduce restrack, setup next resgroup | |
r--; if (r < 0) {r=rescnt-1; modk -= mod; b--;} // if necessary | |
} | |
cout << n << "th prime = " << nthprime << endl; | |
delete[] next; delete[] primes; | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment