Last active
October 29, 2019 17:44
-
-
Save jzuern/94f77d262618e7e3cd640c5b8126cd55 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
import numpy as np | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.layers import Dense, Conv2D, Activation, Flatten | |
from tensorflow.keras.optimizers import Adam | |
from tensorflow.keras.models import model_from_yaml | |
from tensorflow.keras.models import load_model | |
from collections import deque | |
class DQNAgent: | |
def __init__(self, state_size, action_size, model_dir=None): | |
self.state_size = state_size | |
self.action_size = action_size | |
self.memory = deque(maxlen=2000) | |
self.gamma = 0.95 # discount rate | |
self.epsilon = 1.0 # exploration rate | |
self.epsilon_min = 0.01 | |
self.epsilon_decay = 0.995 | |
self.learning_rate = 0.001 | |
if model_dir: | |
# loading stored model archtitecture and model weights | |
self.load_model(model_dir) | |
else: | |
# creating model from scratch | |
self.model = self._build_model() | |
def _build_model(self): | |
seqmodel = Sequential() | |
seqmodel.add(Conv2D(32, (8, 8), strides=(4, 4), input_shape=(40, 40, 1))) | |
seqmodel.add(Activation('relu')) | |
seqmodel.add(Conv2D(64, (4, 4), strides=(2, 2))) | |
seqmodel.add(Activation('relu')) | |
seqmodel.add(Conv2D(64, (3, 3), strides=(1, 1))) | |
seqmodel.add(Activation('relu')) | |
seqmodel.add(Flatten()) | |
seqmodel.add(Dense(100)) | |
seqmodel.add(Activation('relu')) | |
seqmodel.add(Dense(2)) | |
adam = Adam(lr=1e-6) | |
seqmodel.compile(loss='mse', optimizer=adam) | |
return seqmodel | |
def remember(self, state, action, reward, next_state, done): | |
# store S-A-R-S in replay memory | |
self.memory.append((state, action, reward, next_state, done)) | |
def act(self, state): | |
if np.random.rand() <= self.epsilon: | |
return random.randrange(self.action_size) | |
act_values = self.model.predict(state) | |
action = np.argmax(act_values[0]) | |
return action | |
def replay(self, batch_size): | |
minibatch = random.sample(self.memory, batch_size) | |
for state, action, reward, next_state, done in minibatch: | |
target = reward | |
if not done: | |
target = (reward + self.gamma * | |
np.amax(self.model.predict(next_state)[0])) | |
target_f = self.model.predict(state) | |
target_f[0][action] = target | |
# do the learning | |
self.model.fit(state, target_f, epochs=1, verbose=0) | |
if self.epsilon > self.epsilon_min: | |
self.epsilon *= self.epsilon_decay |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment