Created
June 1, 2019 22:59
-
-
Save k-bx/0237b48f1d0698ae241599600774b776 to your computer and use it in GitHub Desktop.
Category theory failed attempt monoid to category
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module ex01 where | |
import prelude | |
import pi | |
import sigma | |
import algstruct | |
import category | |
-- Category Theory by Steve Awodey | |
-- Page 12. Example 12: | |
-- ... | |
-- Equivalently, a monoid is a category with just one object. The arrows of | |
-- the category are the elements of the monoid. In particular, the identity | |
-- arrow is the unit element u. Composition of arrows is the binary operation | |
-- m * n of the monoid. | |
data BoringMonoid=MkBoringMonoid | |
monoidToCategoryEx01 (m : monoid) : category | |
= ( ( (MkBoringMonoid, \(bm1:BoringMonoid) -> \(bm2:BoringMonoid) -> m.1) | |
, ( \(bm:BoringMonoid) -> m.2.3 | |
, \(bm1:BoringMonoid) -> \(bm2:BoringMonoid) -> \(bm3:BoringMonoid) -> m.2.1 | |
, ( \(bm1:BoringMonoid) -> \(bm2:BoringMonoid) -> m.1.2 | |
, _TODO_cPathL -- (cPathL : (x y : A) -> (f : hom x y) -> Path (hom x y) (c x x y (id x) f) f) | |
, _TODO_cPathR -- (cPathR : (x y : A) -> (f : hom x y) -> Path (hom x y) (c x y y f (id y)) f) | |
, _TODO_wtf -- ( (x y z w : A) -> (f : hom x y) -> (g : hom y z) -> (h : hom z w) | |
-- -> Path (hom x w) (c x z w (c x y z f g) h) (c x y w f (c y z w g h))) | |
) | |
) | |
) | |
, _TODOIsCategory -- (A : cA C) -> isContr ((B : cA C) * iso C A B) | |
) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment