|
/* This is a public domain general purpose hash table package |
|
originally written by Peter Moore @ UCB. |
|
|
|
The hash table data structures were redesigned and the package was |
|
rewritten by Vladimir Makarov <[email protected]>. */ |
|
|
|
/* The original package implemented classic bucket-based hash tables |
|
with entries doubly linked for an access by their insertion order. |
|
To decrease pointer chasing and as a consequence to improve a data |
|
locality the current implementation is based on storing entries in |
|
an array and using hash tables with open addressing. The current |
|
entries are more compact in comparison with the original ones and |
|
this also improves the data locality. |
|
|
|
The hash table has two arrays called *bins* and *entries*. |
|
|
|
bins: |
|
------- |
|
| | entries array: |
|
|-------| -------------------------------- |
|
| index | | | entry: | | | |
|
|-------| | | | | | |
|
| ... | | ... | hash | ... | ... | |
|
|-------| | | key | | | |
|
| empty | | | record | | | |
|
|-------| -------------------------------- |
|
| ... | ^ ^ |
|
|-------| |_ entries start |_ entries bound |
|
|deleted| |
|
------- |
|
|
|
o The entry array contains table entries in the same order as they |
|
were inserted. |
|
|
|
When the first entry is deleted, a variable containing index of |
|
the current first entry (*entries start*) is changed. In all |
|
other cases of the deletion, we just mark the entry as deleted by |
|
using a reserved hash value. |
|
|
|
Such organization of the entry storage makes operations of the |
|
table shift and the entries traversal very fast. |
|
|
|
o The bins provide access to the entries by their keys. The |
|
key hash is mapped to a bin containing *index* of the |
|
corresponding entry in the entry array. |
|
|
|
The bin array size is always power of two, it makes mapping very |
|
fast by using the corresponding lower bits of the hash. |
|
Generally it is not a good idea to ignore some part of the hash. |
|
But alternative approach is worse. For example, we could use a |
|
modulo operation for mapping and a prime number for the size of |
|
the bin array. Unfortunately, the modulo operation for big |
|
64-bit numbers are extremely slow (it takes more than 100 cycles |
|
on modern Intel CPUs). |
|
|
|
Still other bits of the hash value are used when the mapping |
|
results in a collision. In this case we use a secondary hash |
|
value which is a result of a function of the collision bin |
|
index and the original hash value. The function choice |
|
guarantees that we can traverse all bins and finally find the |
|
corresponding bin as after several iterations the function |
|
becomes a full cycle linear congruential generator because it |
|
satisfies requirements of the Hull-Dobell theorem. |
|
|
|
When an entry is removed from the table besides marking the |
|
hash in the corresponding entry described above, we also mark |
|
the bin by a special value in order to find entries which had |
|
a collision with the removed entries. |
|
|
|
There are two reserved values for the bins. One denotes an |
|
empty bin, another one denotes a bin for a deleted entry. |
|
|
|
o The length of the bin array is at least two times more than the |
|
entry array length. This keeps the table load factor healthy. |
|
The trigger of rebuilding the table is always a case when we can |
|
not insert an entry anymore at the entries bound. We could |
|
change the entries bound too in case of deletion but than we need |
|
a special code to count bins with corresponding deleted entries |
|
and reset the bin values when there are too many bins |
|
corresponding deleted entries |
|
|
|
Table rebuilding is done by creation of a new entry array and |
|
bins of an appropriate size. We also try to reuse the arrays |
|
in some cases by compacting the array and removing deleted |
|
entries. |
|
|
|
o To save memory very small tables have no allocated arrays |
|
bins. We use a linear search for an access by a key. |
|
|
|
o To save more memory we use 8-, 16-, 32- and 64- bit indexes in |
|
bins depending on the current hash table size. |
|
|
|
o The implementation takes into account that the table can be |
|
rebuilt during hashing or comparison functions. It can happen if |
|
the functions are implemented in Ruby and a thread switch occurs |
|
during their execution. |
|
|
|
This implementation speeds up the Ruby hash table benchmarks in |
|
average by more 40% on Intel Haswell CPU. |
|
|
|
*/ |
|
|
|
#if !defined(RUBY) && defined(RUBY_EXPORT) |
|
#define RUBY |
|
#endif |
|
|
|
#ifdef RUBY |
|
#include "internal.h" |
|
#include "internal/bits.h" |
|
#include "internal/hash.h" |
|
#include "internal/sanitizers.h" |
|
#else |
|
//#include "regint.h" |
|
#include "st.h" |
|
#endif |
|
|
|
#include <stdio.h> |
|
#ifdef HAVE_STDLIB_H |
|
#include <stdlib.h> |
|
#endif |
|
#include <string.h> |
|
#include <assert.h> |
|
|
|
#ifdef __GNUC__ |
|
#define PREFETCH(addr, write_p) __builtin_prefetch(addr, write_p) |
|
#define EXPECT(expr, val) __builtin_expect(expr, val) |
|
#define ATTRIBUTE_UNUSED __attribute__((unused)) |
|
#else |
|
#define PREFETCH(addr, write_p) |
|
#define EXPECT(expr, val) (expr) |
|
#define ATTRIBUTE_UNUSED |
|
#endif |
|
|
|
/* The type of hashes. */ |
|
typedef st_index_t st_hash_t; |
|
|
|
struct st_table_entry { |
|
st_hash_t hash; |
|
st_data_t key; |
|
st_data_t record; |
|
}; |
|
|
|
#define type_numhash st_hashtype_num |
|
static const struct st_hash_type st_hashtype_num = { |
|
st_numcmp, |
|
st_numhash, |
|
}; |
|
|
|
static int st_strcmp(st_data_t, st_data_t); |
|
static st_index_t strhash(st_data_t); |
|
static const struct st_hash_type type_strhash = { |
|
st_strcmp, |
|
strhash, |
|
}; |
|
|
|
static int st_locale_insensitive_strcasecmp_i(st_data_t lhs, st_data_t rhs); |
|
static st_index_t strcasehash(st_data_t); |
|
static const struct st_hash_type type_strcasehash = { |
|
st_locale_insensitive_strcasecmp_i, |
|
strcasehash, |
|
}; |
|
|
|
/* Value used to catch uninitialized entries/bins during debugging. |
|
There is a possibility for a false alarm, but its probability is |
|
extremely small. */ |
|
#define ST_INIT_VAL 0xafafafafafafafaf |
|
#define ST_INIT_VAL_BYTE 0xafa |
|
|
|
#ifdef RUBY |
|
#undef malloc |
|
#undef realloc |
|
#undef calloc |
|
#undef free |
|
#define malloc ruby_xmalloc |
|
#define calloc ruby_xcalloc |
|
#define realloc ruby_xrealloc |
|
#define free ruby_xfree |
|
#else /* RUBY */ |
|
#ifndef FALSE |
|
#define FALSE 0 |
|
#endif |
|
#ifndef TRUE |
|
#define TRUE 1 |
|
#endif |
|
#define MEMCPY(p1,p2,type,n) memcpy((p1), (p2), sizeof(type)*(n)) |
|
#define NO_SANITIZE(s,decl) decl |
|
#endif /* RUBY */ |
|
|
|
#define EQUAL(tab,x,y) ((x) == (y) || (*(tab)->type->compare)((x),(y)) == 0) |
|
#define PTR_EQUAL(tab, ptr, hash_val, key_) \ |
|
((ptr)->hash == (hash_val) && EQUAL((tab), (key_), (ptr)->key)) |
|
|
|
/* As PRT_EQUAL only its result is returned in RES. REBUILT_P is set |
|
up to TRUE if the table is rebuilt during the comparison. */ |
|
#define DO_PTR_EQUAL_CHECK(tab, ptr, hash_val, key, res, rebuilt_p) \ |
|
do { \ |
|
unsigned int _old_rebuilds_num = (tab)->rebuilds_num; \ |
|
res = PTR_EQUAL(tab, ptr, hash_val, key); \ |
|
rebuilt_p = _old_rebuilds_num != (tab)->rebuilds_num; \ |
|
} while (FALSE) |
|
|
|
/* Features of a table. */ |
|
struct st_features { |
|
/* Power of 2 used for number of allocated entries. */ |
|
unsigned char entry_power; |
|
/* Power of 2 used for number of allocated bins. Depending on the |
|
table size, the number of bins is 2-4 times more than the |
|
number of entries. */ |
|
unsigned char bin_power; |
|
/* Enumeration of sizes of bins (8-bit, 16-bit etc). */ |
|
unsigned char size_ind; |
|
/* Bins are packed in words of type st_index_t. The following is |
|
a size of bins counted by words. */ |
|
st_index_t bins_words; |
|
}; |
|
|
|
/* Features of all possible size tables. */ |
|
#if SIZEOF_ST_INDEX_T == 8 |
|
#define MAX_POWER2 62 |
|
static const struct st_features features[] = { |
|
{0, 1, 0, 0x0}, |
|
{1, 2, 0, 0x1}, |
|
{2, 3, 0, 0x1}, |
|
{3, 4, 0, 0x2}, |
|
{4, 5, 0, 0x4}, |
|
{5, 6, 0, 0x8}, |
|
{6, 7, 0, 0x10}, |
|
{7, 8, 0, 0x20}, |
|
{8, 9, 1, 0x80}, |
|
{9, 10, 1, 0x100}, |
|
{10, 11, 1, 0x200}, |
|
{11, 12, 1, 0x400}, |
|
{12, 13, 1, 0x800}, |
|
{13, 14, 1, 0x1000}, |
|
{14, 15, 1, 0x2000}, |
|
{15, 16, 1, 0x4000}, |
|
{16, 17, 2, 0x10000}, |
|
{17, 18, 2, 0x20000}, |
|
{18, 19, 2, 0x40000}, |
|
{19, 20, 2, 0x80000}, |
|
{20, 21, 2, 0x100000}, |
|
{21, 22, 2, 0x200000}, |
|
{22, 23, 2, 0x400000}, |
|
{23, 24, 2, 0x800000}, |
|
{24, 25, 2, 0x1000000}, |
|
{25, 26, 2, 0x2000000}, |
|
{26, 27, 2, 0x4000000}, |
|
{27, 28, 2, 0x8000000}, |
|
{28, 29, 2, 0x10000000}, |
|
{29, 30, 2, 0x20000000}, |
|
{30, 31, 2, 0x40000000}, |
|
{31, 32, 2, 0x80000000}, |
|
{32, 33, 3, 0x200000000}, |
|
{33, 34, 3, 0x400000000}, |
|
{34, 35, 3, 0x800000000}, |
|
{35, 36, 3, 0x1000000000}, |
|
{36, 37, 3, 0x2000000000}, |
|
{37, 38, 3, 0x4000000000}, |
|
{38, 39, 3, 0x8000000000}, |
|
{39, 40, 3, 0x10000000000}, |
|
{40, 41, 3, 0x20000000000}, |
|
{41, 42, 3, 0x40000000000}, |
|
{42, 43, 3, 0x80000000000}, |
|
{43, 44, 3, 0x100000000000}, |
|
{44, 45, 3, 0x200000000000}, |
|
{45, 46, 3, 0x400000000000}, |
|
{46, 47, 3, 0x800000000000}, |
|
{47, 48, 3, 0x1000000000000}, |
|
{48, 49, 3, 0x2000000000000}, |
|
{49, 50, 3, 0x4000000000000}, |
|
{50, 51, 3, 0x8000000000000}, |
|
{51, 52, 3, 0x10000000000000}, |
|
{52, 53, 3, 0x20000000000000}, |
|
{53, 54, 3, 0x40000000000000}, |
|
{54, 55, 3, 0x80000000000000}, |
|
{55, 56, 3, 0x100000000000000}, |
|
{56, 57, 3, 0x200000000000000}, |
|
{57, 58, 3, 0x400000000000000}, |
|
{58, 59, 3, 0x800000000000000}, |
|
{59, 60, 3, 0x1000000000000000}, |
|
{60, 61, 3, 0x2000000000000000}, |
|
{61, 62, 3, 0x4000000000000000}, |
|
{62, 63, 3, 0x8000000000000000}, |
|
}; |
|
|
|
#else |
|
#define MAX_POWER2 30 |
|
|
|
static const struct st_features features[] = { |
|
{0, 1, 0, 0x1}, |
|
{1, 2, 0, 0x1}, |
|
{2, 3, 0, 0x2}, |
|
{3, 4, 0, 0x4}, |
|
{4, 5, 0, 0x8}, |
|
{5, 6, 0, 0x10}, |
|
{6, 7, 0, 0x20}, |
|
{7, 8, 0, 0x40}, |
|
{8, 9, 1, 0x100}, |
|
{9, 10, 1, 0x200}, |
|
{10, 11, 1, 0x400}, |
|
{11, 12, 1, 0x800}, |
|
{12, 13, 1, 0x1000}, |
|
{13, 14, 1, 0x2000}, |
|
{14, 15, 1, 0x4000}, |
|
{15, 16, 1, 0x8000}, |
|
{16, 17, 2, 0x20000}, |
|
{17, 18, 2, 0x40000}, |
|
{18, 19, 2, 0x80000}, |
|
{19, 20, 2, 0x100000}, |
|
{20, 21, 2, 0x200000}, |
|
{21, 22, 2, 0x400000}, |
|
{22, 23, 2, 0x800000}, |
|
{23, 24, 2, 0x1000000}, |
|
{24, 25, 2, 0x2000000}, |
|
{25, 26, 2, 0x4000000}, |
|
{26, 27, 2, 0x8000000}, |
|
{27, 28, 2, 0x10000000}, |
|
{28, 29, 2, 0x20000000}, |
|
{29, 30, 2, 0x40000000}, |
|
{30, 31, 2, 0x80000000}, |
|
}; |
|
|
|
#endif |
|
|
|
/* The reserved hash value and its substitution. */ |
|
#define RESERVED_HASH_VAL (~(st_hash_t) 0) |
|
#define RESERVED_HASH_SUBSTITUTION_VAL ((st_hash_t) 0) |
|
|
|
const st_hash_t st_reserved_hash_val = RESERVED_HASH_VAL; |
|
const st_hash_t st_reserved_hash_substitution_val = RESERVED_HASH_SUBSTITUTION_VAL; |
|
|
|
/* Return hash value of KEY for table TAB. */ |
|
static inline st_hash_t |
|
do_hash(st_data_t key, st_table *tab) |
|
{ |
|
st_hash_t hash = (st_hash_t)(tab->type->hash)(key); |
|
|
|
/* RESERVED_HASH_VAL is used for a deleted entry. Map it into |
|
another value. Such mapping should be extremely rare. */ |
|
return hash == RESERVED_HASH_VAL ? RESERVED_HASH_SUBSTITUTION_VAL : hash; |
|
} |
|
|
|
/* Power of 2 defining the minimal number of allocated entries. */ |
|
#define MINIMAL_POWER2 2 |
|
|
|
#if MINIMAL_POWER2 < 2 |
|
#error "MINIMAL_POWER2 should be >= 2" |
|
#endif |
|
|
|
/* If the power2 of the allocated `entries` is less than the following |
|
value, don't allocate bins and use a linear search. */ |
|
#define MAX_POWER2_FOR_TABLES_WITHOUT_BINS 4 |
|
|
|
/* Return smallest n >= MINIMAL_POWER2 such 2^n > SIZE. */ |
|
static int |
|
get_power2(st_index_t size) |
|
{ |
|
unsigned int n; |
|
|
|
#ifdef RUBY |
|
n = ST_INDEX_BITS - nlz_intptr(size); |
|
#else |
|
for (n = 0; size != 0; n++) |
|
size >>= 1; |
|
#endif |
|
if (n <= MAX_POWER2) |
|
return n < MINIMAL_POWER2 ? MINIMAL_POWER2 : n; |
|
#ifdef RUBY |
|
/* Ran out of the table entries */ |
|
rb_raise(rb_eRuntimeError, "st_table too big"); |
|
#endif |
|
/* should raise exception */ |
|
return -1; |
|
} |
|
|
|
/* Return value of N-th bin in array BINS of table with bins size |
|
index S. */ |
|
static inline st_index_t |
|
get_bin(st_index_t *bins, int s, st_index_t n) |
|
{ |
|
return (s == 0 ? ((unsigned char *) bins)[n] |
|
: s == 1 ? ((unsigned short *) bins)[n] |
|
: s == 2 ? ((unsigned int *) bins)[n] |
|
: ((st_index_t *) bins)[n]); |
|
} |
|
|
|
/* Set up N-th bin in array BINS of table with bins size index S to |
|
value V. */ |
|
static inline void |
|
set_bin(st_index_t *bins, int s, st_index_t n, st_index_t v) |
|
{ |
|
if (s == 0) ((unsigned char *) bins)[n] = (unsigned char) v; |
|
else if (s == 1) ((unsigned short *) bins)[n] = (unsigned short) v; |
|
else if (s == 2) ((unsigned int *) bins)[n] = (unsigned int) v; |
|
else ((st_index_t *) bins)[n] = v; |
|
} |
|
|
|
/* These macros define reserved values for empty table bin and table |
|
bin which contains a deleted entry. We will never use such values |
|
for an entry index in bins. */ |
|
#define EMPTY_BIN 0 |
|
#define DELETED_BIN 1 |
|
/* Base of a real entry index in the bins. */ |
|
#define ENTRY_BASE 2 |
|
|
|
/* Mark I-th bin of table TAB as empty, in other words not |
|
corresponding to any entry. */ |
|
#define MARK_BIN_EMPTY(tab, i) (set_bin((tab)->bins, get_size_ind(tab), i, EMPTY_BIN)) |
|
|
|
/* Values used for not found entry and bin with given |
|
characteristics. */ |
|
#define UNDEFINED_ENTRY_IND (~(st_index_t) 0) |
|
#define UNDEFINED_BIN_IND (~(st_index_t) 0) |
|
|
|
/* Entry and bin values returned when we found a table rebuild during |
|
the search. */ |
|
#define REBUILT_TABLE_ENTRY_IND (~(st_index_t) 1) |
|
#define REBUILT_TABLE_BIN_IND (~(st_index_t) 1) |
|
|
|
/* Mark I-th bin of table TAB as corresponding to a deleted table |
|
entry. Update number of entries in the table and number of bins |
|
corresponding to deleted entries. */ |
|
#define MARK_BIN_DELETED(tab, i) \ |
|
do { \ |
|
set_bin((tab)->bins, get_size_ind(tab), i, DELETED_BIN); \ |
|
} while (0) |
|
|
|
/* Macros to check that value B is used empty bins and bins |
|
corresponding deleted entries. */ |
|
#define EMPTY_BIN_P(b) ((b) == EMPTY_BIN) |
|
#define DELETED_BIN_P(b) ((b) == DELETED_BIN) |
|
#define EMPTY_OR_DELETED_BIN_P(b) ((b) <= DELETED_BIN) |
|
|
|
/* Macros to check empty bins and bins corresponding to deleted |
|
entries. Bins are given by their index I in table TAB. */ |
|
#define IND_EMPTY_BIN_P(tab, i) (EMPTY_BIN_P(get_bin((tab)->bins, get_size_ind(tab), i))) |
|
#define IND_DELETED_BIN_P(tab, i) (DELETED_BIN_P(get_bin((tab)->bins, get_size_ind(tab), i))) |
|
#define IND_EMPTY_OR_DELETED_BIN_P(tab, i) (EMPTY_OR_DELETED_BIN_P(get_bin((tab)->bins, get_size_ind(tab), i))) |
|
|
|
/* Macros for marking and checking deleted entries given by their |
|
pointer E_PTR. */ |
|
#define MARK_ENTRY_DELETED(e_ptr) ((e_ptr)->hash = RESERVED_HASH_VAL) |
|
#define DELETED_ENTRY_P(e_ptr) ((e_ptr)->hash == RESERVED_HASH_VAL) |
|
|
|
/* Return bin size index of table TAB. */ |
|
static inline unsigned int |
|
get_size_ind(const st_table *tab) |
|
{ |
|
return tab->size_ind; |
|
} |
|
|
|
/* Return the number of allocated bins of table TAB. */ |
|
static inline st_index_t |
|
get_bins_num(const st_table *tab) |
|
{ |
|
return ((st_index_t) 1)<<tab->bin_power; |
|
} |
|
|
|
/* Return mask for a bin index in table TAB. */ |
|
static inline st_index_t |
|
bins_mask(const st_table *tab) |
|
{ |
|
return get_bins_num(tab) - 1; |
|
} |
|
|
|
/* Return the index of table TAB bin corresponding to |
|
HASH_VALUE. */ |
|
static inline st_index_t |
|
hash_bin(st_hash_t hash_value, st_table *tab) |
|
{ |
|
return hash_value & bins_mask(tab); |
|
} |
|
|
|
/* Return the number of allocated entries of table TAB. */ |
|
static inline st_index_t |
|
get_allocated_entries(const st_table *tab) |
|
{ |
|
return ((st_index_t) 1)<<tab->entry_power; |
|
} |
|
|
|
/* Return size of the allocated bins of table TAB. */ |
|
static inline st_index_t |
|
bins_size(const st_table *tab) |
|
{ |
|
return features[tab->entry_power].bins_words * sizeof (st_index_t); |
|
} |
|
|
|
/* Mark all bins of table TAB as empty. */ |
|
static void |
|
initialize_bins(st_table *tab) |
|
{ |
|
memset(tab->bins, 0, bins_size(tab)); |
|
} |
|
|
|
/* Make table TAB empty. */ |
|
static void |
|
make_tab_empty(st_table *tab) |
|
{ |
|
tab->num_entries = 0; |
|
tab->entries_start = tab->entries_bound = 0; |
|
if (tab->bins != NULL) |
|
initialize_bins(tab); |
|
} |
|
|
|
#ifdef HASH_LOG |
|
#ifdef HAVE_UNISTD_H |
|
#include <unistd.h> |
|
#endif |
|
static struct { |
|
int all, total, num, str, strcase; |
|
} collision; |
|
|
|
/* Flag switching off output of package statistics at the end of |
|
program. */ |
|
static int init_st = 0; |
|
|
|
/* Output overall number of table searches and collisions into a |
|
temporary file. */ |
|
static void |
|
stat_col(void) |
|
{ |
|
char fname[10+sizeof(long)*3]; |
|
FILE *f; |
|
if (!collision.total) return; |
|
f = fopen((snprintf(fname, sizeof(fname), "/tmp/col%ld", (long)getpid()), fname), "w"); |
|
if (f == NULL) |
|
return; |
|
fprintf(f, "collision: %d / %d (%6.2f)\n", collision.all, collision.total, |
|
((double)collision.all / (collision.total)) * 100); |
|
fprintf(f, "num: %d, str: %d, strcase: %d\n", collision.num, collision.str, collision.strcase); |
|
fclose(f); |
|
} |
|
#endif |
|
|
|
/* Create and return table with TYPE which can hold at least SIZE |
|
entries. The real number of entries which the table can hold is |
|
the nearest power of two for SIZE. */ |
|
st_table * |
|
st_init_table_with_size(const struct st_hash_type *type, st_index_t size) |
|
{ |
|
st_table *tab; |
|
int n; |
|
|
|
#ifdef HASH_LOG |
|
#if HASH_LOG+0 < 0 |
|
{ |
|
const char *e = getenv("ST_HASH_LOG"); |
|
if (!e || !*e) init_st = 1; |
|
} |
|
#endif |
|
if (init_st == 0) { |
|
init_st = 1; |
|
atexit(stat_col); |
|
} |
|
#endif |
|
|
|
n = get_power2(size); |
|
#ifndef RUBY |
|
if (n < 0) |
|
return NULL; |
|
#endif |
|
tab = (st_table *) malloc(sizeof (st_table)); |
|
#ifndef RUBY |
|
if (tab == NULL) |
|
return NULL; |
|
#endif |
|
tab->type = type; |
|
tab->entry_power = n; |
|
tab->bin_power = features[n].bin_power; |
|
tab->size_ind = features[n].size_ind; |
|
if (n <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS) |
|
tab->bins = NULL; |
|
else { |
|
tab->bins = (st_index_t *) malloc(bins_size(tab)); |
|
#ifndef RUBY |
|
if (tab->bins == NULL) { |
|
free(tab); |
|
return NULL; |
|
} |
|
#endif |
|
} |
|
tab->entries = (st_table_entry *) malloc(get_allocated_entries(tab) |
|
* sizeof(st_table_entry)); |
|
#ifndef RUBY |
|
if (tab->entries == NULL) { |
|
st_free_table(tab); |
|
return NULL; |
|
} |
|
#endif |
|
make_tab_empty(tab); |
|
tab->rebuilds_num = 0; |
|
return tab; |
|
} |
|
|
|
/* Create and return table with TYPE which can hold a minimal number |
|
of entries (see comments for get_power2). */ |
|
st_table * |
|
st_init_table(const struct st_hash_type *type) |
|
{ |
|
return st_init_table_with_size(type, 0); |
|
} |
|
|
|
/* Create and return table which can hold a minimal number of |
|
numbers. */ |
|
st_table * |
|
st_init_numtable(void) |
|
{ |
|
return st_init_table(&type_numhash); |
|
} |
|
|
|
/* Create and return table which can hold SIZE numbers. */ |
|
st_table * |
|
st_init_numtable_with_size(st_index_t size) |
|
{ |
|
return st_init_table_with_size(&type_numhash, size); |
|
} |
|
|
|
/* Create and return table which can hold a minimal number of |
|
strings. */ |
|
st_table * |
|
st_init_strtable(void) |
|
{ |
|
return st_init_table(&type_strhash); |
|
} |
|
|
|
/* Create and return table which can hold SIZE strings. */ |
|
st_table * |
|
st_init_strtable_with_size(st_index_t size) |
|
{ |
|
return st_init_table_with_size(&type_strhash, size); |
|
} |
|
|
|
/* Create and return table which can hold a minimal number of strings |
|
whose character case is ignored. */ |
|
st_table * |
|
st_init_strcasetable(void) |
|
{ |
|
return st_init_table(&type_strcasehash); |
|
} |
|
|
|
/* Create and return table which can hold SIZE strings whose character |
|
case is ignored. */ |
|
st_table * |
|
st_init_strcasetable_with_size(st_index_t size) |
|
{ |
|
return st_init_table_with_size(&type_strcasehash, size); |
|
} |
|
|
|
/* Make table TAB empty. */ |
|
void |
|
st_clear(st_table *tab) |
|
{ |
|
make_tab_empty(tab); |
|
tab->rebuilds_num++; |
|
} |
|
|
|
/* Free table TAB space. */ |
|
void |
|
st_free_table(st_table *tab) |
|
{ |
|
if (tab->bins != NULL) |
|
free(tab->bins); |
|
free(tab->entries); |
|
free(tab); |
|
} |
|
|
|
/* Return byte size of memory allocated for table TAB. */ |
|
size_t |
|
st_memsize(const st_table *tab) |
|
{ |
|
return(sizeof(st_table) |
|
+ (tab->bins == NULL ? 0 : bins_size(tab)) |
|
+ get_allocated_entries(tab) * sizeof(st_table_entry)); |
|
} |
|
|
|
static st_index_t |
|
find_table_entry_ind(st_table *tab, st_hash_t hash_value, st_data_t key); |
|
|
|
static st_index_t |
|
find_table_bin_ind(st_table *tab, st_hash_t hash_value, st_data_t key); |
|
|
|
static st_index_t |
|
find_table_bin_ind_direct(st_table *table, st_hash_t hash_value, st_data_t key); |
|
|
|
static st_index_t |
|
find_table_bin_ptr_and_reserve(st_table *tab, st_hash_t *hash_value, |
|
st_data_t key, st_index_t *bin_ind); |
|
|
|
#ifdef HASH_LOG |
|
static void |
|
count_collision(const struct st_hash_type *type) |
|
{ |
|
collision.all++; |
|
if (type == &type_numhash) { |
|
collision.num++; |
|
} |
|
else if (type == &type_strhash) { |
|
collision.strcase++; |
|
} |
|
else if (type == &type_strcasehash) { |
|
collision.str++; |
|
} |
|
} |
|
|
|
#define COLLISION (collision_check ? count_collision(tab->type) : (void)0) |
|
#define FOUND_BIN (collision_check ? collision.total++ : (void)0) |
|
#define collision_check 0 |
|
#else |
|
#define COLLISION |
|
#define FOUND_BIN |
|
#endif |
|
|
|
/* If the number of entries in the table is at least REBUILD_THRESHOLD |
|
times less than the entry array length, decrease the table |
|
size. */ |
|
#define REBUILD_THRESHOLD 4 |
|
|
|
#if REBUILD_THRESHOLD < 2 |
|
#error "REBUILD_THRESHOLD should be >= 2" |
|
#endif |
|
|
|
/* Rebuild table TAB. Rebuilding removes all deleted bins and entries |
|
and can change size of the table entries and bins arrays. |
|
Rebuilding is implemented by creation of a new table or by |
|
compaction of the existing one. */ |
|
static void |
|
rebuild_table(st_table *tab) |
|
{ |
|
st_index_t i, ni, bound; |
|
unsigned int size_ind; |
|
st_table *new_tab; |
|
st_table_entry *entries, *new_entries; |
|
st_table_entry *curr_entry_ptr; |
|
st_index_t *bins; |
|
st_index_t bin_ind; |
|
|
|
bound = tab->entries_bound; |
|
entries = tab->entries; |
|
if ((2 * tab->num_entries <= get_allocated_entries(tab) |
|
&& REBUILD_THRESHOLD * tab->num_entries > get_allocated_entries(tab)) |
|
|| tab->num_entries < (1 << MINIMAL_POWER2)) { |
|
/* Compaction: */ |
|
tab->num_entries = 0; |
|
if (tab->bins != NULL) |
|
initialize_bins(tab); |
|
new_tab = tab; |
|
new_entries = entries; |
|
} |
|
else { |
|
new_tab = st_init_table_with_size(tab->type, |
|
2 * tab->num_entries - 1); |
|
new_entries = new_tab->entries; |
|
} |
|
ni = 0; |
|
bins = new_tab->bins; |
|
size_ind = get_size_ind(new_tab); |
|
for (i = tab->entries_start; i < bound; i++) { |
|
curr_entry_ptr = &entries[i]; |
|
PREFETCH(entries + i + 1, 0); |
|
if (EXPECT(DELETED_ENTRY_P(curr_entry_ptr), 0)) |
|
continue; |
|
if (&new_entries[ni] != curr_entry_ptr) |
|
new_entries[ni] = *curr_entry_ptr; |
|
if (EXPECT(bins != NULL, 1)) { |
|
bin_ind = find_table_bin_ind_direct(new_tab, curr_entry_ptr->hash, |
|
curr_entry_ptr->key); |
|
set_bin(bins, size_ind, bin_ind, ni + ENTRY_BASE); |
|
} |
|
new_tab->num_entries++; |
|
ni++; |
|
} |
|
if (new_tab != tab) { |
|
tab->entry_power = new_tab->entry_power; |
|
tab->bin_power = new_tab->bin_power; |
|
tab->size_ind = new_tab->size_ind; |
|
if (tab->bins != NULL) |
|
free(tab->bins); |
|
tab->bins = new_tab->bins; |
|
free(tab->entries); |
|
tab->entries = new_tab->entries; |
|
free(new_tab); |
|
} |
|
tab->entries_start = 0; |
|
tab->entries_bound = tab->num_entries; |
|
tab->rebuilds_num++; |
|
} |
|
|
|
/* Return the next secondary hash index for table TAB using previous |
|
index IND and PERTERB. Finally modulo of the function becomes a |
|
full *cycle linear congruential generator*, in other words it |
|
guarantees traversing all table bins in extreme case. |
|
|
|
According the Hull-Dobell theorem a generator |
|
"Xnext = (a*Xprev + c) mod m" is a full cycle generator iff |
|
o m and c are relatively prime |
|
o a-1 is divisible by all prime factors of m |
|
o a-1 is divisible by 4 if m is divisible by 4. |
|
|
|
For our case a is 5, c is 1, and m is a power of two. */ |
|
static inline st_index_t |
|
secondary_hash(st_index_t ind, st_table *tab, st_index_t *perterb) |
|
{ |
|
*perterb >>= 11; |
|
ind = (ind << 2) + ind + *perterb + 1; |
|
return hash_bin(ind, tab); |
|
} |
|
|
|
/* Find an entry with HASH_VALUE and KEY in TABLE using a linear |
|
search. Return the index of the found entry in array `entries`. |
|
If it is not found, return UNDEFINED_ENTRY_IND. If the table was |
|
rebuilt during the search, return REBUILT_TABLE_ENTRY_IND. */ |
|
static inline st_index_t |
|
find_entry(st_table *tab, st_hash_t hash_value, st_data_t key) |
|
{ |
|
int eq_p, rebuilt_p; |
|
st_index_t i, bound; |
|
st_table_entry *entries; |
|
|
|
bound = tab->entries_bound; |
|
entries = tab->entries; |
|
for (i = tab->entries_start; i < bound; i++) { |
|
DO_PTR_EQUAL_CHECK(tab, &entries[i], hash_value, key, eq_p, rebuilt_p); |
|
if (EXPECT(rebuilt_p, 0)) |
|
return REBUILT_TABLE_ENTRY_IND; |
|
if (eq_p) |
|
return i; |
|
} |
|
return UNDEFINED_ENTRY_IND; |
|
} |
|
|
|
/* Use the quadratic probing. The method has a better data locality |
|
but more collisions than the current approach. In average it |
|
results in a bit slower search. */ |
|
/*#define QUADRATIC_PROBE*/ |
|
|
|
/* Return index of entry with HASH_VALUE and KEY in table TAB. If |
|
there is no such entry, return UNDEFINED_ENTRY_IND. If the table |
|
was rebuilt during the search, return REBUILT_TABLE_ENTRY_IND. */ |
|
static st_index_t |
|
find_table_entry_ind(st_table *tab, st_hash_t hash_value, st_data_t key) |
|
{ |
|
int eq_p, rebuilt_p; |
|
st_index_t ind; |
|
#ifdef QUADRATIC_PROBE |
|
st_index_t d; |
|
#else |
|
st_index_t peterb; |
|
#endif |
|
st_index_t bin; |
|
st_table_entry *entries = tab->entries; |
|
|
|
ind = hash_bin(hash_value, tab); |
|
#ifdef QUADRATIC_PROBE |
|
d = 1; |
|
#else |
|
peterb = hash_value; |
|
#endif |
|
FOUND_BIN; |
|
for (;;) { |
|
bin = get_bin(tab->bins, get_size_ind(tab), ind); |
|
if (! EMPTY_OR_DELETED_BIN_P(bin)) { |
|
DO_PTR_EQUAL_CHECK(tab, &entries[bin - ENTRY_BASE], hash_value, key, eq_p, rebuilt_p); |
|
if (EXPECT(rebuilt_p, 0)) |
|
return REBUILT_TABLE_ENTRY_IND; |
|
if (eq_p) |
|
break; |
|
} else if (EMPTY_BIN_P(bin)) |
|
return UNDEFINED_ENTRY_IND; |
|
#ifdef QUADRATIC_PROBE |
|
ind = hash_bin(ind + d, tab); |
|
d++; |
|
#else |
|
ind = secondary_hash(ind, tab, &peterb); |
|
#endif |
|
COLLISION; |
|
} |
|
return bin; |
|
} |
|
|
|
/* Find and return index of table TAB bin corresponding to an entry |
|
with HASH_VALUE and KEY. If there is no such bin, return |
|
UNDEFINED_BIN_IND. If the table was rebuilt during the search, |
|
return REBUILT_TABLE_BIN_IND. */ |
|
static st_index_t |
|
find_table_bin_ind(st_table *tab, st_hash_t hash_value, st_data_t key) |
|
{ |
|
int eq_p, rebuilt_p; |
|
st_index_t ind; |
|
#ifdef QUADRATIC_PROBE |
|
st_index_t d; |
|
#else |
|
st_index_t peterb; |
|
#endif |
|
st_index_t bin; |
|
st_table_entry *entries = tab->entries; |
|
|
|
ind = hash_bin(hash_value, tab); |
|
#ifdef QUADRATIC_PROBE |
|
d = 1; |
|
#else |
|
peterb = hash_value; |
|
#endif |
|
FOUND_BIN; |
|
for (;;) { |
|
bin = get_bin(tab->bins, get_size_ind(tab), ind); |
|
if (! EMPTY_OR_DELETED_BIN_P(bin)) { |
|
DO_PTR_EQUAL_CHECK(tab, &entries[bin - ENTRY_BASE], hash_value, key, eq_p, rebuilt_p); |
|
if (EXPECT(rebuilt_p, 0)) |
|
return REBUILT_TABLE_BIN_IND; |
|
if (eq_p) |
|
break; |
|
} else if (EMPTY_BIN_P(bin)) |
|
return UNDEFINED_BIN_IND; |
|
#ifdef QUADRATIC_PROBE |
|
ind = hash_bin(ind + d, tab); |
|
d++; |
|
#else |
|
ind = secondary_hash(ind, tab, &peterb); |
|
#endif |
|
COLLISION; |
|
} |
|
return ind; |
|
} |
|
|
|
/* Find and return index of table TAB bin corresponding to an entry |
|
with HASH_VALUE and KEY. The entry should be in the table |
|
already. */ |
|
static st_index_t |
|
find_table_bin_ind_direct(st_table *tab, st_hash_t hash_value, st_data_t key) |
|
{ |
|
st_index_t ind; |
|
#ifdef QUADRATIC_PROBE |
|
st_index_t d; |
|
#else |
|
st_index_t peterb; |
|
#endif |
|
st_index_t bin; |
|
|
|
ind = hash_bin(hash_value, tab); |
|
#ifdef QUADRATIC_PROBE |
|
d = 1; |
|
#else |
|
peterb = hash_value; |
|
#endif |
|
FOUND_BIN; |
|
for (;;) { |
|
bin = get_bin(tab->bins, get_size_ind(tab), ind); |
|
if (EMPTY_OR_DELETED_BIN_P(bin)) |
|
return ind; |
|
#ifdef QUADRATIC_PROBE |
|
ind = hash_bin(ind + d, tab); |
|
d++; |
|
#else |
|
ind = secondary_hash(ind, tab, &peterb); |
|
#endif |
|
COLLISION; |
|
} |
|
} |
|
|
|
/* Return index of table TAB bin for HASH_VALUE and KEY through |
|
BIN_IND and the pointed value as the function result. Reserve the |
|
bin for inclusion of the corresponding entry into the table if it |
|
is not there yet. We always find such bin as bins array length is |
|
bigger entries array. Although we can reuse a deleted bin, the |
|
result bin value is always empty if the table has no entry with |
|
KEY. Return the entries array index of the found entry or |
|
UNDEFINED_ENTRY_IND if it is not found. If the table was rebuilt |
|
during the search, return REBUILT_TABLE_ENTRY_IND. */ |
|
static st_index_t |
|
find_table_bin_ptr_and_reserve(st_table *tab, st_hash_t *hash_value, |
|
st_data_t key, st_index_t *bin_ind) |
|
{ |
|
int eq_p, rebuilt_p; |
|
st_index_t ind; |
|
st_hash_t curr_hash_value = *hash_value; |
|
#ifdef QUADRATIC_PROBE |
|
st_index_t d; |
|
#else |
|
st_index_t peterb; |
|
#endif |
|
st_index_t entry_index; |
|
st_index_t first_deleted_bin_ind; |
|
st_table_entry *entries; |
|
|
|
ind = hash_bin(curr_hash_value, tab); |
|
#ifdef QUADRATIC_PROBE |
|
d = 1; |
|
#else |
|
peterb = curr_hash_value; |
|
#endif |
|
FOUND_BIN; |
|
first_deleted_bin_ind = UNDEFINED_BIN_IND; |
|
entries = tab->entries; |
|
for (;;) { |
|
entry_index = get_bin(tab->bins, get_size_ind(tab), ind); |
|
if (EMPTY_BIN_P(entry_index)) { |
|
tab->num_entries++; |
|
entry_index = UNDEFINED_ENTRY_IND; |
|
if (first_deleted_bin_ind != UNDEFINED_BIN_IND) { |
|
/* We can reuse bin of a deleted entry. */ |
|
ind = first_deleted_bin_ind; |
|
MARK_BIN_EMPTY(tab, ind); |
|
} |
|
break; |
|
} |
|
else if (! DELETED_BIN_P(entry_index)) { |
|
DO_PTR_EQUAL_CHECK(tab, &entries[entry_index - ENTRY_BASE], curr_hash_value, key, eq_p, rebuilt_p); |
|
if (EXPECT(rebuilt_p, 0)) |
|
return REBUILT_TABLE_ENTRY_IND; |
|
if (eq_p) |
|
break; |
|
} |
|
else if (first_deleted_bin_ind == UNDEFINED_BIN_IND) |
|
first_deleted_bin_ind = ind; |
|
#ifdef QUADRATIC_PROBE |
|
ind = hash_bin(ind + d, tab); |
|
d++; |
|
#else |
|
ind = secondary_hash(ind, tab, &peterb); |
|
#endif |
|
COLLISION; |
|
} |
|
*bin_ind = ind; |
|
return entry_index; |
|
} |
|
|
|
/* Find an entry with KEY in table TAB. Return non-zero if we found |
|
it. Set up *RECORD to the found entry record. */ |
|
int |
|
st_lookup(st_table *tab, st_data_t key, st_data_t *value) |
|
{ |
|
st_index_t bin; |
|
st_hash_t hash = do_hash(key, tab); |
|
|
|
retry: |
|
if (tab->bins == NULL) { |
|
bin = find_entry(tab, hash, key); |
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) |
|
goto retry; |
|
if (bin == UNDEFINED_ENTRY_IND) |
|
return 0; |
|
} |
|
else { |
|
bin = find_table_entry_ind(tab, hash, key); |
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) |
|
goto retry; |
|
if (bin == UNDEFINED_ENTRY_IND) |
|
return 0; |
|
bin -= ENTRY_BASE; |
|
} |
|
if (value != 0) |
|
*value = tab->entries[bin].record; |
|
return 1; |
|
} |
|
|
|
/* Find an entry with KEY in table TAB. Return non-zero if we found |
|
it. Set up *RESULT to the found table entry key. */ |
|
int |
|
st_get_key(st_table *tab, st_data_t key, st_data_t *result) |
|
{ |
|
st_index_t bin; |
|
st_hash_t hash = do_hash(key, tab); |
|
|
|
retry: |
|
if (tab->bins == NULL) { |
|
bin = find_entry(tab, hash, key); |
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) |
|
goto retry; |
|
if (bin == UNDEFINED_ENTRY_IND) |
|
return 0; |
|
} |
|
else { |
|
bin = find_table_entry_ind(tab, hash, key); |
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) |
|
goto retry; |
|
if (bin == UNDEFINED_ENTRY_IND) |
|
return 0; |
|
bin -= ENTRY_BASE; |
|
} |
|
if (result != 0) |
|
*result = tab->entries[bin].key; |
|
return 1; |
|
} |
|
|
|
/* Check the table and rebuild it if it is necessary. */ |
|
static inline void |
|
rebuild_table_if_necessary (st_table *tab) |
|
{ |
|
st_index_t bound = tab->entries_bound; |
|
|
|
if (bound == get_allocated_entries(tab)) |
|
rebuild_table(tab); |
|
} |
|
|
|
/* Insert (KEY, VALUE) into table TAB and return zero. If there is |
|
already entry with KEY in the table, return nonzero and update |
|
the value of the found entry. */ |
|
int |
|
st_insert(st_table *tab, st_data_t key, st_data_t value) |
|
{ |
|
st_table_entry *entry; |
|
st_index_t bin; |
|
st_index_t ind; |
|
st_hash_t hash_value; |
|
st_index_t bin_ind; |
|
int new_p; |
|
|
|
hash_value = do_hash(key, tab); |
|
retry: |
|
rebuild_table_if_necessary(tab); |
|
if (tab->bins == NULL) { |
|
bin = find_entry(tab, hash_value, key); |
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) |
|
goto retry; |
|
new_p = bin == UNDEFINED_ENTRY_IND; |
|
if (new_p) |
|
tab->num_entries++; |
|
bin_ind = UNDEFINED_BIN_IND; |
|
} |
|
else { |
|
bin = find_table_bin_ptr_and_reserve(tab, &hash_value, |
|
key, &bin_ind); |
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) |
|
goto retry; |
|
new_p = bin == UNDEFINED_ENTRY_IND; |
|
bin -= ENTRY_BASE; |
|
} |
|
if (new_p) { |
|
ind = tab->entries_bound++; |
|
entry = &tab->entries[ind]; |
|
entry->hash = hash_value; |
|
entry->key = key; |
|
entry->record = value; |
|
if (bin_ind != UNDEFINED_BIN_IND) |
|
set_bin(tab->bins, get_size_ind(tab), bin_ind, ind + ENTRY_BASE); |
|
return 0; |
|
} |
|
tab->entries[bin].record = value; |
|
return 1; |
|
} |
|
|
|
/* Insert (KEY, VALUE, HASH) into table TAB. The table should not have |
|
entry with KEY before the insertion. */ |
|
static inline void |
|
st_add_direct_with_hash(st_table *tab, |
|
st_data_t key, st_data_t value, st_hash_t hash) |
|
{ |
|
st_table_entry *entry; |
|
st_index_t ind; |
|
st_index_t bin_ind; |
|
|
|
rebuild_table_if_necessary(tab); |
|
ind = tab->entries_bound++; |
|
entry = &tab->entries[ind]; |
|
entry->hash = hash; |
|
entry->key = key; |
|
entry->record = value; |
|
tab->num_entries++; |
|
if (tab->bins != NULL) { |
|
bin_ind = find_table_bin_ind_direct(tab, hash, key); |
|
set_bin(tab->bins, get_size_ind(tab), bin_ind, ind + ENTRY_BASE); |
|
} |
|
} |
|
|
|
/* Insert (KEY, VALUE) into table TAB. The table should not have |
|
entry with KEY before the insertion. */ |
|
void |
|
st_add_direct(st_table *tab, st_data_t key, st_data_t value) |
|
{ |
|
st_hash_t hash_value; |
|
|
|
hash_value = do_hash(key, tab); |
|
st_add_direct_with_hash(tab, key, value, hash_value); |
|
} |
|
|
|
/* Insert (FUNC(KEY), VALUE) into table TAB and return zero. If |
|
there is already entry with KEY in the table, return nonzero and |
|
update the value of the found entry. */ |
|
int |
|
st_insert2(st_table *tab, st_data_t key, st_data_t value, |
|
st_data_t (*func)(st_data_t)) |
|
{ |
|
st_table_entry *entry; |
|
st_index_t bin; |
|
st_index_t ind; |
|
st_hash_t hash_value; |
|
st_index_t bin_ind; |
|
int new_p; |
|
|
|
hash_value = do_hash(key, tab); |
|
retry: |
|
rebuild_table_if_necessary (tab); |
|
if (tab->bins == NULL) { |
|
bin = find_entry(tab, hash_value, key); |
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) |
|
goto retry; |
|
new_p = bin == UNDEFINED_ENTRY_IND; |
|
if (new_p) |
|
tab->num_entries++; |
|
bin_ind = UNDEFINED_BIN_IND; |
|
} |
|
else { |
|
bin = find_table_bin_ptr_and_reserve(tab, &hash_value, |
|
key, &bin_ind); |
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) |
|
goto retry; |
|
new_p = bin == UNDEFINED_ENTRY_IND; |
|
bin -= ENTRY_BASE; |
|
} |
|
if (new_p) { |
|
key = (*func)(key); |
|
ind = tab->entries_bound++; |
|
entry = &tab->entries[ind]; |
|
entry->hash = hash_value; |
|
entry->key = key; |
|
entry->record = value; |
|
if (bin_ind != UNDEFINED_BIN_IND) |
|
set_bin(tab->bins, get_size_ind(tab), bin_ind, ind + ENTRY_BASE); |
|
return 0; |
|
} |
|
tab->entries[bin].record = value; |
|
return 1; |
|
} |
|
|
|
/* Create and return a copy of table OLD_TAB. */ |
|
st_table * |
|
st_copy(st_table *old_tab) |
|
{ |
|
st_table *new_tab; |
|
|
|
new_tab = (st_table *) malloc(sizeof(st_table)); |
|
#ifndef RUBY |
|
if (new_tab == NULL) |
|
return NULL; |
|
#endif |
|
*new_tab = *old_tab; |
|
if (old_tab->bins == NULL) |
|
new_tab->bins = NULL; |
|
else { |
|
new_tab->bins = (st_index_t *) malloc(bins_size(old_tab)); |
|
#ifndef RUBY |
|
if (new_tab->bins == NULL) { |
|
free(new_tab); |
|
return NULL; |
|
} |
|
#endif |
|
} |
|
new_tab->entries = (st_table_entry *) malloc(get_allocated_entries(old_tab) |
|
* sizeof(st_table_entry)); |
|
#ifndef RUBY |
|
if (new_tab->entries == NULL) { |
|
st_free_table(new_tab); |
|
return NULL; |
|
} |
|
#endif |
|
MEMCPY(new_tab->entries, old_tab->entries, st_table_entry, |
|
get_allocated_entries(old_tab)); |
|
if (old_tab->bins != NULL) |
|
MEMCPY(new_tab->bins, old_tab->bins, char, bins_size(old_tab)); |
|
return new_tab; |
|
} |
|
|
|
/* Update the entries start of table TAB after removing an entry |
|
with index N in the array entries. */ |
|
static inline void |
|
update_range_for_deleted(st_table *tab, st_index_t n) |
|
{ |
|
/* Do not update entries_bound here. Otherwise, we can fill all |
|
bins by deleted entry value before rebuilding the table. */ |
|
if (tab->entries_start == n) |
|
tab->entries_start = n + 1; |
|
} |
|
|
|
/* Delete entry with KEY from table TAB, set up *VALUE (unless |
|
VALUE is zero) from deleted table entry, and return non-zero. If |
|
there is no entry with KEY in the table, clear *VALUE (unless VALUE |
|
is zero), and return zero. */ |
|
static int |
|
st_general_delete(st_table *tab, st_data_t *key, st_data_t *value) |
|
{ |
|
st_table_entry *entry; |
|
st_index_t bin; |
|
st_index_t bin_ind; |
|
st_hash_t hash; |
|
|
|
hash = do_hash(*key, tab); |
|
retry: |
|
if (tab->bins == NULL) { |
|
bin = find_entry(tab, hash, *key); |
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) |
|
goto retry; |
|
if (bin == UNDEFINED_ENTRY_IND) { |
|
if (value != 0) *value = 0; |
|
return 0; |
|
} |
|
} |
|
else { |
|
bin_ind = find_table_bin_ind(tab, hash, *key); |
|
if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0)) |
|
goto retry; |
|
if (bin_ind == UNDEFINED_BIN_IND) { |
|
if (value != 0) *value = 0; |
|
return 0; |
|
} |
|
bin = get_bin(tab->bins, get_size_ind(tab), bin_ind) - ENTRY_BASE; |
|
MARK_BIN_DELETED(tab, bin_ind); |
|
} |
|
entry = &tab->entries[bin]; |
|
*key = entry->key; |
|
if (value != 0) *value = entry->record; |
|
MARK_ENTRY_DELETED(entry); |
|
tab->num_entries--; |
|
update_range_for_deleted(tab, bin); |
|
return 1; |
|
} |
|
|
|
int |
|
st_delete(st_table *tab, st_data_t *key, st_data_t *value) |
|
{ |
|
return st_general_delete(tab, key, value); |
|
} |
|
|
|
/* The function and other functions with suffix '_safe' or '_check' |
|
are originated from the previous implementation of the hash tables. |
|
It was necessary for correct deleting entries during traversing |
|
tables. The current implementation permits deletion during |
|
traversing without a specific way to do this. */ |
|
int |
|
st_delete_safe(st_table *tab, st_data_t *key, st_data_t *value, |
|
st_data_t never ATTRIBUTE_UNUSED) |
|
{ |
|
return st_general_delete(tab, key, value); |
|
} |
|
|
|
/* If table TAB is empty, clear *VALUE (unless VALUE is zero), and |
|
return zero. Otherwise, remove the first entry in the table. |
|
Return its key through KEY and its record through VALUE (unless |
|
VALUE is zero). */ |
|
int |
|
st_shift(st_table *tab, st_data_t *key, st_data_t *value) |
|
{ |
|
st_index_t i, bound; |
|
st_index_t bin; |
|
st_table_entry *entries, *curr_entry_ptr; |
|
st_index_t bin_ind; |
|
|
|
entries = tab->entries; |
|
bound = tab->entries_bound; |
|
for (i = tab->entries_start; i < bound; i++) { |
|
curr_entry_ptr = &entries[i]; |
|
if (! DELETED_ENTRY_P(curr_entry_ptr)) { |
|
st_hash_t entry_hash = curr_entry_ptr->hash; |
|
st_data_t entry_key = curr_entry_ptr->key; |
|
|
|
if (value != 0) *value = curr_entry_ptr->record; |
|
*key = entry_key; |
|
retry: |
|
if (tab->bins == NULL) { |
|
bin = find_entry(tab, entry_hash, entry_key); |
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) { |
|
entries = tab->entries; |
|
goto retry; |
|
} |
|
curr_entry_ptr = &entries[bin]; |
|
} |
|
else { |
|
bin_ind = find_table_bin_ind(tab, entry_hash, entry_key); |
|
if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0)) { |
|
entries = tab->entries; |
|
goto retry; |
|
} |
|
curr_entry_ptr = &entries[get_bin(tab->bins, get_size_ind(tab), bin_ind) |
|
- ENTRY_BASE]; |
|
MARK_BIN_DELETED(tab, bin_ind); |
|
} |
|
MARK_ENTRY_DELETED(curr_entry_ptr); |
|
tab->num_entries--; |
|
update_range_for_deleted(tab, i); |
|
return 1; |
|
} |
|
} |
|
tab->entries_start = tab->entries_bound = 0; |
|
if (value != 0) *value = 0; |
|
return 0; |
|
} |
|
|
|
/* See comments for function st_delete_safe. */ |
|
void |
|
st_cleanup_safe(st_table *tab ATTRIBUTE_UNUSED, |
|
st_data_t never ATTRIBUTE_UNUSED) |
|
{ |
|
} |
|
|
|
/* Find entry with KEY in table TAB, call FUNC with the key and the |
|
value of the found entry, and non-zero as the 3rd argument. If the |
|
entry is not found, call FUNC with KEY, and 2 zero arguments. If |
|
the call returns ST_CONTINUE, the table will have an entry with key |
|
and value returned by FUNC through the 1st and 2nd parameters. If |
|
the call of FUNC returns ST_DELETE, the table will not have entry |
|
with KEY. The function returns flag of that the entry with KEY was |
|
in the table before the call. */ |
|
int |
|
st_update(st_table *tab, st_data_t key, |
|
st_update_callback_func *func, st_data_t arg) |
|
{ |
|
st_table_entry *entry = NULL; /* to avoid uninitialized value warning */ |
|
st_index_t bin = 0; /* Ditto */ |
|
st_table_entry *entries; |
|
st_index_t bin_ind; |
|
st_data_t value = 0, old_key; |
|
int retval, existing; |
|
st_hash_t hash = do_hash(key, tab); |
|
|
|
retry: |
|
entries = tab->entries; |
|
if (tab->bins == NULL) { |
|
bin = find_entry(tab, hash, key); |
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) |
|
goto retry; |
|
existing = bin != UNDEFINED_ENTRY_IND; |
|
entry = &entries[bin]; |
|
bin_ind = UNDEFINED_BIN_IND; |
|
} |
|
else { |
|
bin_ind = find_table_bin_ind(tab, hash, key); |
|
if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0)) |
|
goto retry; |
|
existing = bin_ind != UNDEFINED_BIN_IND; |
|
if (existing) { |
|
bin = get_bin(tab->bins, get_size_ind(tab), bin_ind) - ENTRY_BASE; |
|
entry = &entries[bin]; |
|
} |
|
} |
|
if (existing) { |
|
key = entry->key; |
|
value = entry->record; |
|
} |
|
old_key = key; |
|
retval = (*func)(&key, &value, arg, existing); |
|
switch (retval) { |
|
case ST_CONTINUE: |
|
if (! existing) { |
|
st_add_direct_with_hash(tab, key, value, hash); |
|
break; |
|
} |
|
if (old_key != key) { |
|
entry->key = key; |
|
} |
|
entry->record = value; |
|
break; |
|
case ST_DELETE: |
|
if (existing) { |
|
if (bin_ind != UNDEFINED_BIN_IND) |
|
MARK_BIN_DELETED(tab, bin_ind); |
|
MARK_ENTRY_DELETED(entry); |
|
tab->num_entries--; |
|
update_range_for_deleted(tab, bin); |
|
} |
|
break; |
|
} |
|
return existing; |
|
} |
|
|
|
/* Traverse all entries in table TAB calling FUNC with current entry |
|
key and value and zero. If the call returns ST_STOP, stop |
|
traversing. If the call returns ST_DELETE, delete the current |
|
entry from the table. In case of ST_CHECK or ST_CONTINUE, continue |
|
traversing. The function returns zero unless an error is found. |
|
CHECK_P is flag of st_foreach_check call. The behavior is a bit |
|
different for ST_CHECK and when the current element is removed |
|
during traversing. */ |
|
static inline int |
|
st_general_foreach(st_table *tab, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg, |
|
int check_p) |
|
{ |
|
st_index_t bin; |
|
st_index_t bin_ind; |
|
st_table_entry *entries, *curr_entry_ptr; |
|
enum st_retval retval; |
|
st_index_t i, rebuilds_num; |
|
st_hash_t hash; |
|
st_data_t key; |
|
int error_p, packed_p = tab->bins == NULL; |
|
|
|
entries = tab->entries; |
|
/* The bound can change inside the loop even without rebuilding |
|
the table, e.g. by an entry insertion. */ |
|
for (i = tab->entries_start; i < tab->entries_bound; i++) { |
|
curr_entry_ptr = &entries[i]; |
|
if (EXPECT(DELETED_ENTRY_P(curr_entry_ptr), 0)) |
|
continue; |
|
key = curr_entry_ptr->key; |
|
rebuilds_num = tab->rebuilds_num; |
|
hash = curr_entry_ptr->hash; |
|
retval = (*func)(key, curr_entry_ptr->record, arg, 0); |
|
|
|
if (retval == ST_REPLACE && replace) { |
|
st_data_t value; |
|
value = curr_entry_ptr->record; |
|
retval = (*replace)(&key, &value, arg, TRUE); |
|
curr_entry_ptr->key = key; |
|
curr_entry_ptr->record = value; |
|
} |
|
|
|
if (rebuilds_num != tab->rebuilds_num) { |
|
retry: |
|
entries = tab->entries; |
|
packed_p = tab->bins == NULL; |
|
if (packed_p) { |
|
i = find_entry(tab, hash, key); |
|
if (EXPECT(i == REBUILT_TABLE_ENTRY_IND, 0)) |
|
goto retry; |
|
error_p = i == UNDEFINED_ENTRY_IND; |
|
} |
|
else { |
|
i = find_table_entry_ind(tab, hash, key); |
|
if (EXPECT(i == REBUILT_TABLE_ENTRY_IND, 0)) |
|
goto retry; |
|
error_p = i == UNDEFINED_ENTRY_IND; |
|
i -= ENTRY_BASE; |
|
} |
|
if (error_p && check_p) { |
|
/* call func with error notice */ |
|
retval = (*func)(0, 0, arg, 1); |
|
return 1; |
|
} |
|
curr_entry_ptr = &entries[i]; |
|
} |
|
switch (retval) { |
|
case ST_REPLACE: |
|
break; |
|
case ST_CONTINUE: |
|
break; |
|
case ST_CHECK: |
|
if (check_p) |
|
break; |
|
case ST_STOP: |
|
return 0; |
|
case ST_DELETE: { |
|
st_data_t key = curr_entry_ptr->key; |
|
|
|
again: |
|
if (packed_p) { |
|
bin = find_entry(tab, hash, key); |
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) |
|
goto again; |
|
if (bin == UNDEFINED_ENTRY_IND) |
|
break; |
|
} |
|
else { |
|
bin_ind = find_table_bin_ind(tab, hash, key); |
|
if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0)) |
|
goto again; |
|
if (bin_ind == UNDEFINED_BIN_IND) |
|
break; |
|
bin = get_bin(tab->bins, get_size_ind(tab), bin_ind) - ENTRY_BASE; |
|
MARK_BIN_DELETED(tab, bin_ind); |
|
} |
|
curr_entry_ptr = &entries[bin]; |
|
MARK_ENTRY_DELETED(curr_entry_ptr); |
|
tab->num_entries--; |
|
update_range_for_deleted(tab, bin); |
|
break; |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
int |
|
st_foreach_with_replace(st_table *tab, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg) |
|
{ |
|
return st_general_foreach(tab, func, replace, arg, TRUE); |
|
} |
|
|
|
struct functor { |
|
st_foreach_callback_func *func; |
|
st_data_t arg; |
|
}; |
|
|
|
static int |
|
apply_functor(st_data_t k, st_data_t v, st_data_t d, int _) |
|
{ |
|
const struct functor *f = (void *)d; |
|
return f->func(k, v, f->arg); |
|
} |
|
|
|
int |
|
st_foreach(st_table *tab, st_foreach_callback_func *func, st_data_t arg) |
|
{ |
|
const struct functor f = { func, arg }; |
|
return st_general_foreach(tab, apply_functor, 0, (st_data_t)&f, FALSE); |
|
} |
|
|
|
/* See comments for function st_delete_safe. */ |
|
int |
|
st_foreach_check(st_table *tab, st_foreach_check_callback_func *func, st_data_t arg, |
|
st_data_t never ATTRIBUTE_UNUSED) |
|
{ |
|
return st_general_foreach(tab, func, 0, arg, TRUE); |
|
} |
|
|
|
/* Set up array KEYS by at most SIZE keys of head table TAB entries. |
|
Return the number of keys set up in array KEYS. */ |
|
static inline st_index_t |
|
st_general_keys(st_table *tab, st_data_t *keys, st_index_t size) |
|
{ |
|
st_index_t i, bound; |
|
st_data_t key, *keys_start, *keys_end; |
|
st_table_entry *curr_entry_ptr, *entries = tab->entries; |
|
|
|
bound = tab->entries_bound; |
|
keys_start = keys; |
|
keys_end = keys + size; |
|
for (i = tab->entries_start; i < bound; i++) { |
|
if (keys == keys_end) |
|
break; |
|
curr_entry_ptr = &entries[i]; |
|
key = curr_entry_ptr->key; |
|
if (! DELETED_ENTRY_P(curr_entry_ptr)) |
|
*keys++ = key; |
|
} |
|
|
|
return keys - keys_start; |
|
} |
|
|
|
st_index_t |
|
st_keys(st_table *tab, st_data_t *keys, st_index_t size) |
|
{ |
|
return st_general_keys(tab, keys, size); |
|
} |
|
|
|
/* See comments for function st_delete_safe. */ |
|
st_index_t |
|
st_keys_check(st_table *tab, st_data_t *keys, st_index_t size, |
|
st_data_t never ATTRIBUTE_UNUSED) |
|
{ |
|
return st_general_keys(tab, keys, size); |
|
} |
|
|
|
/* Set up array VALUES by at most SIZE values of head table TAB |
|
entries. Return the number of values set up in array VALUES. */ |
|
static inline st_index_t |
|
st_general_values(st_table *tab, st_data_t *values, st_index_t size) |
|
{ |
|
st_index_t i, bound; |
|
st_data_t *values_start, *values_end; |
|
st_table_entry *curr_entry_ptr, *entries = tab->entries; |
|
|
|
values_start = values; |
|
values_end = values + size; |
|
bound = tab->entries_bound; |
|
for (i = tab->entries_start; i < bound; i++) { |
|
if (values == values_end) |
|
break; |
|
curr_entry_ptr = &entries[i]; |
|
if (! DELETED_ENTRY_P(curr_entry_ptr)) |
|
*values++ = curr_entry_ptr->record; |
|
} |
|
|
|
return values - values_start; |
|
} |
|
|
|
st_index_t |
|
st_values(st_table *tab, st_data_t *values, st_index_t size) |
|
{ |
|
return st_general_values(tab, values, size); |
|
} |
|
|
|
/* See comments for function st_delete_safe. */ |
|
st_index_t |
|
st_values_check(st_table *tab, st_data_t *values, st_index_t size, |
|
st_data_t never ATTRIBUTE_UNUSED) |
|
{ |
|
return st_general_values(tab, values, size); |
|
} |
|
|
|
#define FNV1_32A_INIT 0x811c9dc5 |
|
|
|
/* |
|
* 32 bit magic FNV-1a prime |
|
*/ |
|
#define FNV_32_PRIME 0x01000193 |
|
|
|
#ifndef UNALIGNED_WORD_ACCESS |
|
# if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \ |
|
defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || \ |
|
defined(__powerpc64__) || \ |
|
defined(__mc68020__) |
|
# define UNALIGNED_WORD_ACCESS 1 |
|
# endif |
|
#endif |
|
#ifndef UNALIGNED_WORD_ACCESS |
|
# define UNALIGNED_WORD_ACCESS 0 |
|
#endif |
|
|
|
/* This hash function is quite simplified MurmurHash3 |
|
* Simplification is legal, cause most of magic still happens in finalizator. |
|
* And finalizator is almost the same as in MurmurHash3 */ |
|
#define BIG_CONSTANT(x,y) ((st_index_t)(x)<<32|(st_index_t)(y)) |
|
#define ROTL(x,n) ((x)<<(n)|(x)>>(SIZEOF_ST_INDEX_T*CHAR_BIT-(n))) |
|
|
|
#if ST_INDEX_BITS <= 32 |
|
#define C1 (st_index_t)0xcc9e2d51 |
|
#define C2 (st_index_t)0x1b873593 |
|
#else |
|
#define C1 BIG_CONSTANT(0x87c37b91,0x114253d5); |
|
#define C2 BIG_CONSTANT(0x4cf5ad43,0x2745937f); |
|
#endif |
|
NO_SANITIZE("unsigned-integer-overflow", static inline st_index_t murmur_step(st_index_t h, st_index_t k)); |
|
NO_SANITIZE("unsigned-integer-overflow", static inline st_index_t murmur_finish(st_index_t h)); |
|
NO_SANITIZE("unsigned-integer-overflow", extern st_index_t st_hash(const void *ptr, size_t len, st_index_t h)); |
|
|
|
static inline st_index_t |
|
murmur_step(st_index_t h, st_index_t k) |
|
{ |
|
#if ST_INDEX_BITS <= 32 |
|
#define r1 (17) |
|
#define r2 (11) |
|
#else |
|
#define r1 (33) |
|
#define r2 (24) |
|
#endif |
|
k *= C1; |
|
h ^= ROTL(k, r1); |
|
h *= C2; |
|
h = ROTL(h, r2); |
|
return h; |
|
} |
|
#undef r1 |
|
#undef r2 |
|
|
|
static inline st_index_t |
|
murmur_finish(st_index_t h) |
|
{ |
|
#if ST_INDEX_BITS <= 32 |
|
#define r1 (16) |
|
#define r2 (13) |
|
#define r3 (16) |
|
const st_index_t c1 = 0x85ebca6b; |
|
const st_index_t c2 = 0xc2b2ae35; |
|
#else |
|
/* values are taken from Mix13 on http://zimbry.blogspot.ru/2011/09/better-bit-mixing-improving-on.html */ |
|
#define r1 (30) |
|
#define r2 (27) |
|
#define r3 (31) |
|
const st_index_t c1 = BIG_CONSTANT(0xbf58476d,0x1ce4e5b9); |
|
const st_index_t c2 = BIG_CONSTANT(0x94d049bb,0x133111eb); |
|
#endif |
|
#if ST_INDEX_BITS > 64 |
|
h ^= h >> 64; |
|
h *= c2; |
|
h ^= h >> 65; |
|
#endif |
|
h ^= h >> r1; |
|
h *= c1; |
|
h ^= h >> r2; |
|
h *= c2; |
|
h ^= h >> r3; |
|
return h; |
|
} |
|
#undef r1 |
|
#undef r2 |
|
#undef r3 |
|
|
|
st_index_t |
|
st_hash(const void *ptr, size_t len, st_index_t h) |
|
{ |
|
const char *data = ptr; |
|
st_index_t t = 0; |
|
size_t l = len; |
|
|
|
#define data_at(n) (st_index_t)((unsigned char)data[(n)]) |
|
#define UNALIGNED_ADD_4 UNALIGNED_ADD(2); UNALIGNED_ADD(1); UNALIGNED_ADD(0) |
|
#if SIZEOF_ST_INDEX_T > 4 |
|
#define UNALIGNED_ADD_8 UNALIGNED_ADD(6); UNALIGNED_ADD(5); UNALIGNED_ADD(4); UNALIGNED_ADD(3); UNALIGNED_ADD_4 |
|
#if SIZEOF_ST_INDEX_T > 8 |
|
#define UNALIGNED_ADD_16 UNALIGNED_ADD(14); UNALIGNED_ADD(13); UNALIGNED_ADD(12); UNALIGNED_ADD(11); \ |
|
UNALIGNED_ADD(10); UNALIGNED_ADD(9); UNALIGNED_ADD(8); UNALIGNED_ADD(7); UNALIGNED_ADD_8 |
|
#define UNALIGNED_ADD_ALL UNALIGNED_ADD_16 |
|
#endif |
|
#define UNALIGNED_ADD_ALL UNALIGNED_ADD_8 |
|
#else |
|
#define UNALIGNED_ADD_ALL UNALIGNED_ADD_4 |
|
#endif |
|
#undef SKIP_TAIL |
|
if (len >= sizeof(st_index_t)) { |
|
#if !UNALIGNED_WORD_ACCESS |
|
int align = (int)((st_data_t)data % sizeof(st_index_t)); |
|
if (align) { |
|
st_index_t d = 0; |
|
int sl, sr, pack; |
|
|
|
switch (align) { |
|
#ifdef WORDS_BIGENDIAN |
|
# define UNALIGNED_ADD(n) case SIZEOF_ST_INDEX_T - (n) - 1: \ |
|
t |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 2) |
|
#else |
|
# define UNALIGNED_ADD(n) case SIZEOF_ST_INDEX_T - (n) - 1: \ |
|
t |= data_at(n) << CHAR_BIT*(n) |
|
#endif |
|
UNALIGNED_ADD_ALL; |
|
#undef UNALIGNED_ADD |
|
} |
|
|
|
#ifdef WORDS_BIGENDIAN |
|
t >>= (CHAR_BIT * align) - CHAR_BIT; |
|
#else |
|
t <<= (CHAR_BIT * align); |
|
#endif |
|
|
|
data += sizeof(st_index_t)-align; |
|
len -= sizeof(st_index_t)-align; |
|
|
|
sl = CHAR_BIT * (SIZEOF_ST_INDEX_T-align); |
|
sr = CHAR_BIT * align; |
|
|
|
while (len >= sizeof(st_index_t)) { |
|
d = *(st_index_t *)data; |
|
#ifdef WORDS_BIGENDIAN |
|
t = (t << sr) | (d >> sl); |
|
#else |
|
t = (t >> sr) | (d << sl); |
|
#endif |
|
h = murmur_step(h, t); |
|
t = d; |
|
data += sizeof(st_index_t); |
|
len -= sizeof(st_index_t); |
|
} |
|
|
|
pack = len < (size_t)align ? (int)len : align; |
|
d = 0; |
|
switch (pack) { |
|
#ifdef WORDS_BIGENDIAN |
|
# define UNALIGNED_ADD(n) case (n) + 1: \ |
|
d |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 1) |
|
#else |
|
# define UNALIGNED_ADD(n) case (n) + 1: \ |
|
d |= data_at(n) << CHAR_BIT*(n) |
|
#endif |
|
UNALIGNED_ADD_ALL; |
|
#undef UNALIGNED_ADD |
|
} |
|
#ifdef WORDS_BIGENDIAN |
|
t = (t << sr) | (d >> sl); |
|
#else |
|
t = (t >> sr) | (d << sl); |
|
#endif |
|
|
|
if (len < (size_t)align) goto skip_tail; |
|
# define SKIP_TAIL 1 |
|
h = murmur_step(h, t); |
|
data += pack; |
|
len -= pack; |
|
} |
|
else |
|
#endif |
|
#ifdef HAVE_BUILTIN___BUILTIN_ASSUME_ALIGNED |
|
#define aligned_data __builtin_assume_aligned(data, sizeof(st_index_t)) |
|
#else |
|
#define aligned_data data |
|
#endif |
|
{ |
|
do { |
|
h = murmur_step(h, *(st_index_t *)aligned_data); |
|
data += sizeof(st_index_t); |
|
len -= sizeof(st_index_t); |
|
} while (len >= sizeof(st_index_t)); |
|
} |
|
} |
|
|
|
t = 0; |
|
switch (len) { |
|
#if UNALIGNED_WORD_ACCESS && SIZEOF_ST_INDEX_T <= 8 && CHAR_BIT == 8 |
|
/* in this case byteorder doesn't really matter */ |
|
#if SIZEOF_ST_INDEX_T > 4 |
|
case 7: t |= data_at(6) << 48; |
|
case 6: t |= data_at(5) << 40; |
|
case 5: t |= data_at(4) << 32; |
|
case 4: |
|
t |= (st_index_t)*(uint32_t*)aligned_data; |
|
goto skip_tail; |
|
# define SKIP_TAIL 1 |
|
#endif |
|
case 3: t |= data_at(2) << 16; |
|
case 2: t |= data_at(1) << 8; |
|
case 1: t |= data_at(0); |
|
#else |
|
#ifdef WORDS_BIGENDIAN |
|
# define UNALIGNED_ADD(n) case (n) + 1: \ |
|
t |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 1) |
|
#else |
|
# define UNALIGNED_ADD(n) case (n) + 1: \ |
|
t |= data_at(n) << CHAR_BIT*(n) |
|
#endif |
|
UNALIGNED_ADD_ALL; |
|
#undef UNALIGNED_ADD |
|
#endif |
|
#ifdef SKIP_TAIL |
|
skip_tail: |
|
#endif |
|
h ^= t; h -= ROTL(t, 7); |
|
h *= C2; |
|
} |
|
h ^= l; |
|
#undef aligned_data |
|
|
|
return murmur_finish(h); |
|
} |
|
|
|
st_index_t |
|
st_hash_uint32(st_index_t h, uint32_t i) |
|
{ |
|
return murmur_step(h, i); |
|
} |
|
|
|
NO_SANITIZE("unsigned-integer-overflow", extern st_index_t st_hash_uint(st_index_t h, st_index_t i)); |
|
st_index_t |
|
st_hash_uint(st_index_t h, st_index_t i) |
|
{ |
|
i += h; |
|
/* no matter if it is BigEndian or LittleEndian, |
|
* we hash just integers */ |
|
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 8*8 |
|
h = murmur_step(h, i >> 8*8); |
|
#endif |
|
h = murmur_step(h, i); |
|
return h; |
|
} |
|
|
|
st_index_t |
|
st_hash_end(st_index_t h) |
|
{ |
|
h = murmur_finish(h); |
|
return h; |
|
} |
|
|
|
#undef st_hash_start |
|
st_index_t |
|
rb_st_hash_start(st_index_t h) |
|
{ |
|
return h; |
|
} |
|
|
|
static st_index_t |
|
strhash(st_data_t arg) |
|
{ |
|
register const char *string = (const char *)arg; |
|
return st_hash(string, strlen(string), FNV1_32A_INIT); |
|
} |
|
|
|
int |
|
st_locale_insensitive_strcasecmp(const char *s1, const char *s2) |
|
{ |
|
char c1, c2; |
|
|
|
while (1) { |
|
c1 = *s1++; |
|
c2 = *s2++; |
|
if (c1 == '\0' || c2 == '\0') { |
|
if (c1 != '\0') return 1; |
|
if (c2 != '\0') return -1; |
|
return 0; |
|
} |
|
if (('A' <= c1) && (c1 <= 'Z')) c1 += 'a' - 'A'; |
|
if (('A' <= c2) && (c2 <= 'Z')) c2 += 'a' - 'A'; |
|
if (c1 != c2) { |
|
if (c1 > c2) |
|
return 1; |
|
else |
|
return -1; |
|
} |
|
} |
|
} |
|
|
|
int |
|
st_locale_insensitive_strncasecmp(const char *s1, const char *s2, size_t n) |
|
{ |
|
char c1, c2; |
|
size_t i; |
|
|
|
for (i = 0; i < n; i++) { |
|
c1 = *s1++; |
|
c2 = *s2++; |
|
if (c1 == '\0' || c2 == '\0') { |
|
if (c1 != '\0') return 1; |
|
if (c2 != '\0') return -1; |
|
return 0; |
|
} |
|
if (('A' <= c1) && (c1 <= 'Z')) c1 += 'a' - 'A'; |
|
if (('A' <= c2) && (c2 <= 'Z')) c2 += 'a' - 'A'; |
|
if (c1 != c2) { |
|
if (c1 > c2) |
|
return 1; |
|
else |
|
return -1; |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static int |
|
st_strcmp(st_data_t lhs, st_data_t rhs) |
|
{ |
|
const char *s1 = (char *)lhs; |
|
const char *s2 = (char *)rhs; |
|
return strcmp(s1, s2); |
|
} |
|
|
|
static int |
|
st_locale_insensitive_strcasecmp_i(st_data_t lhs, st_data_t rhs) |
|
{ |
|
const char *s1 = (char *)lhs; |
|
const char *s2 = (char *)rhs; |
|
return st_locale_insensitive_strcasecmp(s1, s2); |
|
} |
|
|
|
NO_SANITIZE("unsigned-integer-overflow", PUREFUNC(static st_index_t strcasehash(st_data_t))); |
|
static st_index_t |
|
strcasehash(st_data_t arg) |
|
{ |
|
register const char *string = (const char *)arg; |
|
register st_index_t hval = FNV1_32A_INIT; |
|
|
|
/* |
|
* FNV-1a hash each octet in the buffer |
|
*/ |
|
while (*string) { |
|
unsigned int c = (unsigned char)*string++; |
|
if ((unsigned int)(c - 'A') <= ('Z' - 'A')) c += 'a' - 'A'; |
|
hval ^= c; |
|
|
|
/* multiply by the 32 bit FNV magic prime mod 2^32 */ |
|
hval *= FNV_32_PRIME; |
|
} |
|
return hval; |
|
} |
|
|
|
int |
|
st_numcmp(st_data_t x, st_data_t y) |
|
{ |
|
return x != y; |
|
} |
|
|
|
st_index_t |
|
st_numhash(st_data_t n) |
|
{ |
|
enum {s1 = 11, s2 = 3}; |
|
return (st_index_t)((n>>s1|(n<<s2)) ^ (n>>s2)); |
|
} |
|
|
|
/* Expand TAB to be suitable for holding SIZ entries in total. |
|
Pre-existing entries remain not deleted inside of TAB, but its bins |
|
are cleared to expect future reconstruction. See rehash below. */ |
|
static void |
|
st_expand_table(st_table *tab, st_index_t siz) |
|
{ |
|
st_table *tmp; |
|
st_index_t n; |
|
|
|
if (siz <= get_allocated_entries(tab)) |
|
return; /* enough room already */ |
|
|
|
tmp = st_init_table_with_size(tab->type, siz); |
|
n = get_allocated_entries(tab); |
|
MEMCPY(tmp->entries, tab->entries, st_table_entry, n); |
|
free(tab->entries); |
|
if (tab->bins != NULL) |
|
free(tab->bins); |
|
if (tmp->bins != NULL) |
|
free(tmp->bins); |
|
tab->entry_power = tmp->entry_power; |
|
tab->bin_power = tmp->bin_power; |
|
tab->size_ind = tmp->size_ind; |
|
tab->entries = tmp->entries; |
|
tab->bins = NULL; |
|
tab->rebuilds_num++; |
|
free(tmp); |
|
} |
|
|
|
/* Rehash using linear search. Return TRUE if we found that the table |
|
was rebuilt. */ |
|
static int |
|
st_rehash_linear(st_table *tab) |
|
{ |
|
int eq_p, rebuilt_p; |
|
st_index_t i, j; |
|
st_table_entry *p, *q; |
|
if (tab->bins) { |
|
free(tab->bins); |
|
tab->bins = NULL; |
|
} |
|
for (i = tab->entries_start; i < tab->entries_bound; i++) { |
|
p = &tab->entries[i]; |
|
if (DELETED_ENTRY_P(p)) |
|
continue; |
|
for (j = i + 1; j < tab->entries_bound; j++) { |
|
q = &tab->entries[j]; |
|
if (DELETED_ENTRY_P(q)) |
|
continue; |
|
DO_PTR_EQUAL_CHECK(tab, p, q->hash, q->key, eq_p, rebuilt_p); |
|
if (EXPECT(rebuilt_p, 0)) |
|
return TRUE; |
|
if (eq_p) { |
|
*p = *q; |
|
MARK_ENTRY_DELETED(q); |
|
tab->num_entries--; |
|
update_range_for_deleted(tab, j); |
|
} |
|
} |
|
} |
|
return FALSE; |
|
} |
|
|
|
/* Rehash using index. Return TRUE if we found that the table was |
|
rebuilt. */ |
|
static int |
|
st_rehash_indexed(st_table *tab) |
|
{ |
|
int eq_p, rebuilt_p; |
|
st_index_t i; |
|
st_index_t const n = bins_size(tab); |
|
unsigned int const size_ind = get_size_ind(tab); |
|
st_index_t *bins = realloc(tab->bins, n); |
|
tab->bins = bins; |
|
initialize_bins(tab); |
|
for (i = tab->entries_start; i < tab->entries_bound; i++) { |
|
st_table_entry *p = &tab->entries[i]; |
|
st_index_t ind; |
|
#ifdef QUADRATIC_PROBE |
|
st_index_t d = 1; |
|
#else |
|
st_index_t peterb = p->hash; |
|
#endif |
|
|
|
if (DELETED_ENTRY_P(p)) |
|
continue; |
|
|
|
ind = hash_bin(p->hash, tab); |
|
for(;;) { |
|
st_index_t bin = get_bin(bins, size_ind, ind); |
|
if (EMPTY_OR_DELETED_BIN_P(bin)) { |
|
/* ok, new room */ |
|
set_bin(bins, size_ind, ind, i + ENTRY_BASE); |
|
break; |
|
} |
|
else { |
|
st_table_entry *q = &tab->entries[bin - ENTRY_BASE]; |
|
DO_PTR_EQUAL_CHECK(tab, q, p->hash, p->key, eq_p, rebuilt_p); |
|
if (EXPECT(rebuilt_p, 0)) |
|
return TRUE; |
|
if (eq_p) { |
|
/* duplicated key; delete it */ |
|
q->record = p->record; |
|
MARK_ENTRY_DELETED(p); |
|
tab->num_entries--; |
|
update_range_for_deleted(tab, bin); |
|
break; |
|
} |
|
else { |
|
/* hash collision; skip it */ |
|
#ifdef QUADRATIC_PROBE |
|
ind = hash_bin(ind + d, tab); |
|
d++; |
|
#else |
|
ind = secondary_hash(ind, tab, &peterb); |
|
#endif |
|
} |
|
} |
|
} |
|
} |
|
return FALSE; |
|
} |
|
|
|
/* Reconstruct TAB's bins according to TAB's entries. This function |
|
permits conflicting keys inside of entries. No errors are reported |
|
then. All but one of them are discarded silently. */ |
|
static void |
|
st_rehash(st_table *tab) |
|
{ |
|
int rebuilt_p; |
|
|
|
do { |
|
if (tab->bin_power <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS) |
|
rebuilt_p = st_rehash_linear(tab); |
|
else |
|
rebuilt_p = st_rehash_indexed(tab); |
|
} while (rebuilt_p); |
|
} |
|
|
|
#ifdef RUBY |
|
static st_data_t |
|
st_stringify(VALUE key) |
|
{ |
|
return (rb_obj_class(key) == rb_cString && !RB_OBJ_FROZEN(key)) ? |
|
rb_hash_key_str(key) : key; |
|
} |
|
|
|
static void |
|
st_insert_single(st_table *tab, VALUE hash, VALUE key, VALUE val) |
|
{ |
|
st_data_t k = st_stringify(key); |
|
st_table_entry e; |
|
e.hash = do_hash(k, tab); |
|
e.key = k; |
|
e.record = val; |
|
|
|
tab->entries[tab->entries_bound++] = e; |
|
tab->num_entries++; |
|
RB_OBJ_WRITTEN(hash, Qundef, k); |
|
RB_OBJ_WRITTEN(hash, Qundef, val); |
|
} |
|
|
|
static void |
|
st_insert_linear(st_table *tab, long argc, const VALUE *argv, VALUE hash) |
|
{ |
|
long i; |
|
|
|
for (i = 0; i < argc; /* */) { |
|
st_data_t k = st_stringify(argv[i++]); |
|
st_data_t v = argv[i++]; |
|
st_insert(tab, k, v); |
|
RB_OBJ_WRITTEN(hash, Qundef, k); |
|
RB_OBJ_WRITTEN(hash, Qundef, v); |
|
} |
|
} |
|
|
|
static void |
|
st_insert_generic(st_table *tab, long argc, const VALUE *argv, VALUE hash) |
|
{ |
|
long i; |
|
|
|
/* push elems */ |
|
for (i = 0; i < argc; /* */) { |
|
VALUE key = argv[i++]; |
|
VALUE val = argv[i++]; |
|
st_insert_single(tab, hash, key, val); |
|
} |
|
|
|
/* reindex */ |
|
st_rehash(tab); |
|
} |
|
|
|
/* Mimics ruby's { foo => bar } syntax. This function is subpart |
|
of rb_hash_bulk_insert. */ |
|
void |
|
rb_hash_bulk_insert_into_st_table(long argc, const VALUE *argv, VALUE hash) |
|
{ |
|
st_index_t n, size = argc / 2; |
|
st_table *tab = RHASH_ST_TABLE(hash); |
|
|
|
tab = RHASH_TBL_RAW(hash); |
|
n = tab->entries_bound + size; |
|
st_expand_table(tab, n); |
|
if (UNLIKELY(tab->num_entries)) |
|
st_insert_generic(tab, argc, argv, hash); |
|
else if (argc <= 2) |
|
st_insert_single(tab, hash, argv[0], argv[1]); |
|
else if (tab->bin_power <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS) |
|
st_insert_linear(tab, argc, argv, hash); |
|
else |
|
st_insert_generic(tab, argc, argv, hash); |
|
} |
|
#endif |