Last active
February 7, 2022 15:07
-
-
Save k06a/b990b7c7dda766d4f661e653d6804a53 to your computer and use it in GitHub Desktop.
Modular inverse with binary shifts and uint256
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// SPDX-License-Identifier: MIT | |
pragma solidity ^0.8.11; | |
contract ModInv { | |
uint256 public constant n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F; | |
function inverseDiv(uint256 a) public pure returns(uint256) { | |
return inverseDiv(a, n); | |
} | |
// https://github.com/jbaylina/ecsol/blob/c2256afad126b7500e6f879a9369b100e47d435d/ec.sol#L51-L67 | |
function inverseDiv(uint256 a, uint256 m) public pure returns(uint256 t) { | |
uint256 newT = 1; | |
uint256 r = m; | |
uint256 newR = a; | |
uint256 q; | |
while (newR != 0) { | |
q = r / newR; | |
(t, newT) = (newT, addmod(t , (m - mulmod(q, newT, m)) , m)); | |
(r, newR) = (newR, r - q * newR); | |
} | |
} | |
function inverseShift(uint256 a) public pure returns(uint256) { | |
return inverseShift(a, n); | |
} | |
// https://www.researchgate.net/publication/304417579_Modular_Inverse_Algorithms_Without_Multiplications_for_Cryptographic_Applications | |
function inverseShift(uint256 a, uint256 m) public pure returns(uint256) { | |
unchecked { | |
uint256 u; | |
uint256 v; | |
uint256 r; | |
uint256 s; | |
if (a < m) { u = m; v = a; r = 0; s = 1; } | |
else { v = m; u = a; s = 0; r = 1; } | |
uint256 llu = ll(u, true); | |
uint256 llv = ll(v, true); | |
uint256 flip = 0; | |
for (uint i = 0; v + 1 > 2; i++) { // not 0 +/-1 | |
uint256 f = llu - llv; | |
if ((1 - (u >> 255)) | (i < 1 + flip ? 1 : 0) == (1 - (v >> 255)) | (i < 1 + (1-flip) ? 1 : 0)) { | |
u = u - (v << f); | |
r = r - (s << f); | |
} | |
else { | |
u = u + (v << f); | |
r = r + (s << f); | |
} | |
llu = ll(u); | |
if (llu < llv) { | |
flip = 1; | |
(u,v,r,s,llu,llv) = (v,u,s,r,llv,llu); | |
} | |
} | |
if (v == 0) { return 0; } | |
if (v >> 255 == 1) { s = 0-s; } | |
if (s >> 255 == 0 && s > m) { return s - m; } | |
if (s >> 255 == 1) { return s + m; } | |
return s; | |
} | |
} | |
function ll(uint256 a) public pure returns(uint256 ret) { | |
return ll(a, false); | |
} | |
function ll(uint256 a, bool forcePositive) public pure returns(uint256 ret) { | |
if (!forcePositive && ((a >> 255) == 1)) { | |
unchecked { | |
a = 0-a; | |
} | |
} | |
ret = (a > 0) ? 1 : 0; | |
for (uint k = 128; k > 0; k >>= 1) { | |
uint256 b = a >> k; | |
if (b > 0) { | |
ret += k; | |
a = b; | |
} | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment