Created
July 17, 2023 15:36
-
-
Save k5cents/d4a62c0e051deb6d477962d950ea09ac to your computer and use it in GitHub Desktop.
Top Golfers Per Capita (by Gender)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidyverse) | |
library(janitor) | |
library(httr) | |
library(k5) | |
# mens owgr --------------------------------------------------------------- | |
a <- GET( | |
url = "https://apiweb.owgr.com/api/owgr/rankings/getRankings", | |
query = list( | |
regionId = 0, | |
pageSize = 500, | |
pageNumber = 1, | |
countryId = 0, | |
sortString = "Rank ASC" | |
) | |
) | |
b <- content(a, simplifyDataFrame = TRUE, flatten = TRUE) | |
b <- as_tibble(b$rankingsList) | |
men_count <- b %>% | |
count( | |
country_code = player.country.code3, | |
name = "men_top_500", | |
sort = TRUE | |
) | |
# womens owgr ------------------------------------------------------------- | |
c <- read_csv("https://www.rolexrankings.com/rolexrankings_2023-07-10.csv") | |
wom_count <- c %>% | |
head(500) %>% | |
count( | |
country_code, | |
name = "wom_top_500", | |
sort = TRUE | |
) | |
# countries --------------------------------------------------------------- | |
pop_zip <- tempfile(fileext = ".zip") | |
GET( | |
url = "https://api.worldbank.org/v2/en/indicator/SP.POP.TOTL", | |
query = list(downloadformat = "csv"), | |
write_disk(pop_zip) | |
) | |
file.size(pop_zip) | |
pop_csv <- unzip(pop_zip, exdir = tempdir()) | |
pop_csv <- pop_csv[grep("Metadata", pop_csv, invert = TRUE)] | |
pop <- read_csv(file = pop_csv, skip = 3) | |
pop <- pop %>% | |
clean_names() %>% | |
select( | |
country_code, | |
pop = x2022 | |
) | |
gbr_pop <- tibble( | |
country_code = c("ENG", "SCO", "WAL", "NIR"), | |
pop = c(56489800, 5454000, 3136000, 1885000) | |
) | |
pop <- pop %>% | |
filter(country_code != "GBR") %>% | |
bind_rows(gbr_pop) | |
# compare ----------------------------------------------------------------- | |
pop_per <- pop %>% | |
left_join(men_count) %>% | |
left_join(wom_count) %>% | |
filter(!(is.na(men_top_500) & is.na(wom_top_500))) %>% | |
arrange(desc(men_top_500)) %>% | |
mutate( | |
across(where(is.numeric), ~coalesce(., 0)), | |
pop = pop / 1e7, | |
per_men = men_top_500 / pop, | |
per_women = wom_top_500 / pop | |
) %>% | |
arrange(desc(per_men)) %>% | |
select(country_code, starts_with("per_")) %>% | |
pivot_longer( | |
cols = starts_with("per_"), | |
names_to = "gender", | |
names_prefix = "per_" | |
) | |
pop_per %>% | |
mutate(across(gender, ~fct_rev(as_factor(.)))) %>% | |
ggplot( | |
mapping = aes( | |
x = reorder(country_code, value), | |
y = value, | |
fill = gender | |
) | |
) + | |
geom_col( | |
position = "stack", | |
color = "black" | |
) + | |
coord_flip() + | |
labs( | |
x = "Country", | |
y = "Top 500 Golfers Per 10 Million" | |
) + | |
theme_classic() + | |
theme( | |
legend.position = c(0.8, 0.2), | |
text = element_text(family = "mono") | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment