Last active
January 9, 2023 12:13
-
-
Save kadirpekel/9d06d9292b3bb2efb5733ecd7d26466d to your computer and use it in GitHub Desktop.
CartPole RL Study
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
from tf_agents.environments import suite_gym | |
from tf_agents.networks.q_network import QNetwork | |
from tf_agents.agents.dqn import dqn_agent | |
from tf_agents.environments import TFPyEnvironment | |
from tf_agents.replay_buffers import TFUniformReplayBuffer | |
from tf_agents.policies.policy_saver import PolicySaver | |
from tf_agents.policies import random_tf_policy | |
from tf_agents.utils import common | |
from tf_agents.metrics import tf_metrics | |
from tf_agents.drivers.dynamic_step_driver import DynamicStepDriver | |
from keras.optimizers import Adam | |
num_iterations = 10000 | |
save_dir = 'saved_states' | |
log_interval = 200 | |
train_env = TFPyEnvironment(suite_gym.load('CartPole-v1')) | |
q_net = QNetwork( | |
train_env.observation_spec(), | |
train_env.action_spec(), | |
fc_layer_params=(100,) | |
) | |
train_step_counter = tf.Variable(0) | |
agent = dqn_agent.DqnAgent( | |
train_env.time_step_spec(), | |
train_env.action_spec(), | |
q_network=q_net, | |
optimizer=Adam(learning_rate=1e-3), | |
td_errors_loss_fn=common.element_wise_squared_loss, | |
train_step_counter=train_step_counter | |
) | |
agent.initialize() | |
replay_buffer = TFUniformReplayBuffer(data_spec=agent.collect_data_spec, | |
batch_size=train_env.batch_size, | |
max_length=10000) | |
random_policy = random_tf_policy.RandomTFPolicy(train_env.time_step_spec(), | |
train_env.action_spec()) | |
collect_driver = DynamicStepDriver( | |
train_env, | |
# agent.collect_policy, | |
random_policy, # <---- This makes the model work as expected | |
observers=[replay_buffer.add_batch], | |
num_steps=1000) | |
collect_driver.run() | |
dataset = replay_buffer.as_dataset( | |
num_steps=agent._n_step_update + 1, | |
sample_batch_size=train_env.batch_size | |
).prefetch(3) | |
avg_return_metric = tf_metrics.AverageReturnMetric() | |
observers = [avg_return_metric, replay_buffer.add_batch] | |
collect_step_driver = DynamicStepDriver( | |
train_env, | |
agent.collect_policy, # <---- This remains as the agent's default | |
observers=observers, | |
num_steps=1 | |
) | |
iterator = iter(dataset) | |
agent.train = common.function(agent.train) | |
agent.train_step_counter.assign(0) | |
policy = None | |
try: | |
policy = tf.saved_model.load(save_dir) | |
except: | |
print('No saved state found, training...') | |
episodes = [] | |
steps = [] | |
for _ in range(num_iterations): | |
collect_step_driver.run() | |
experience, unused_info = next(iterator) | |
train_loss = agent.train(experience) | |
step = agent.train_step_counter.numpy() | |
if step % log_interval == 0: | |
print('step = {0}: loss = {1}'.format(step, train_loss.loss)) | |
episodes.append(train_loss.loss) | |
steps.append(step) | |
print('Average return: {}'.format(avg_return_metric.result().numpy())) | |
policy = agent.policy | |
policy_saver = PolicySaver(agent.policy) | |
policy_saver.save(save_dir) | |
plt.plot(steps, episodes) | |
plt.xlabel('Steps') | |
plt.ylabel('Average Return') | |
plt.show() | |
test_env = TFPyEnvironment(suite_gym.load('CartPole-v1')) | |
num_episodes = 20 | |
for _ in range(num_episodes): | |
time_step = test_env.reset() | |
while not time_step.is_last(): | |
action_step = policy.action(time_step) | |
time_step = test_env.step(action_step) | |
test_env.render(mode='human') | |
time.sleep(0.01) | |
train_env.close() | |
test_env.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment