Last active
March 30, 2016 08:42
-
-
Save kaituoxu/f57f0a081f688acbb18e3a01b4664f0b to your computer and use it in GitHub Desktop.
The implement of Neural Network
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
#coding: utf-8 | |
import numpy as np | |
np.random.seed(1) | |
def sigmoid(x): | |
return 1/(1 + np.exp(-x)) | |
def ForwardComputation(X, w0, w1): | |
v0 = X | |
z1 = np.dot(X, w0) | |
v1 = sigmoid(z1) | |
z2 = np.dot(v1, w1) | |
v2 = sigmoid(z2) | |
return v2 | |
def simpleNN(): | |
X = np.array([[0,0,1], [0,1,1], [1,0,1],[1,1,1]]) | |
y = np.array([[0,0,1,1]]).T | |
W0 = 2*np.random.random((3,4)) - 1 | |
W1 = 2*np.random.random((4,1)) - 1 | |
for i in xrange(10000): | |
z1 = np.dot(X, W0) | |
v1 = sigmoid(z1) | |
z2 = np.dot(v1, W1) | |
v2 = sigmoid(z2) | |
l2_error = (y - v2)*(v2 * (1-v2)) | |
l1_error = l2_error.dot(W1.T) * (v1 * (1-v1)) | |
W1 += v1.T.dot(l2_error) | |
W0 += X.T.dot(l1_error) | |
return W0, W1 | |
if __name__ == '__main__': | |
W0, W1 = simpleNN() | |
print W0 | |
print W1 | |
X = np.array([[0,0,1], [0,1,1], [1,0,1],[1,1,1]]) | |
print ForwardComputation(X, W0, W1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment