Created
August 25, 2015 04:30
-
-
Save kaizu/e633ac806c9b497a3c9c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# A simple implementation of the Gillespie's direct method | |
import numpy | |
from functools import partial | |
def step(t, s, events): | |
a = numpy.array([ev[0](s) for ev in events]) | |
atot = a.sum() | |
if atot == 0.0: | |
return numpy.inf, s | |
r1 = numpy.random.uniform() | |
r2 = numpy.random.uniform() | |
tau = -numpy.log(r1) / atot | |
j, a0 = 0, a[0] | |
while a0 <= r2 * atot: | |
j += 1 | |
a0 += a[j] | |
return (t + tau, events[j][1](s)) | |
def propensity(s, k, v, stoich): | |
a = k * v | |
for i, coef in enumerate(stoich): | |
if coef < 0: | |
a *= (s[i] / v) ** (-coef) | |
return a | |
def fire(s0, stoich): | |
s1 = s0.copy() | |
for i, coef in enumerate(stoich): | |
s1[i] += coef | |
return s1 | |
if __name__ == '__main__': | |
events = [] | |
events.append((partial(propensity, k=1.0/30.0, v=1.0, stoich=(-1, -1, +1)), | |
partial(fire, stoich=(-1, -1, +1)))) | |
events.append((partial(propensity, k=1.0, v=1.0, stoich=(+1, +1, -1)), | |
partial(fire, stoich=(+1, +1, -1)))) | |
t, s = 0.0, numpy.array([60, 60, 0]) | |
for _ in range(120): | |
print("{0:g} {1:s}".format(t, " ".join(["{0:g}".format(v) for v in s]))) | |
t, s = step(t, s, events) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment