Skip to content

Instantly share code, notes, and snippets.

@kalinon
Last active January 4, 2023 00:39
Show Gist options
  • Save kalinon/15f8fac6322c78b4bfcd352704858735 to your computer and use it in GitHub Desktop.
Save kalinon/15f8fac6322c78b4bfcd352704858735 to your computer and use it in GitHub Desktop.
Crystal scripts to prep wow-tcg cards for MPC
import pathlib
import imageio
import requests
import time
import numpy as np
import os
from numpy.fft import fft2, ifft2, fftshift, ifftshift
from skimage.transform import resize
from skimage.filters import unsharp_mask
TOKEN = 'xxxxxx'
INPUT_FOLDER = "xxxxxx"
OUTPUT_FOLDER = "xxxxxx"
def process_image(filename, outputdir, imagename):
pathlib.Path(outputdir).mkdir(parents=True, exist_ok=True)
outputfile = outputdir + "/" + imagename + ".png"
if os.path.isfile(outputfile):
print(f"{imagename} already exists, skipping")
return
time.sleep(0.05)
print(f"Processing: {imagename} - input: {filename} output: {outputfile}")
# Process with waifu2x
r = requests.post(
"https://api.deepai.org/api/waifu2x",
files={
'image': open(filename, 'rb'),
},
headers={'api-key': TOKEN}
)
output_url = r.json()['output_url']
im = imageio.v3.imread(output_url)
# Read in filter image
filterimage = np.copy(imageio.v3.imread("./filterimagenew.png"))
# Resize filter to shape of input image
filterimage = resize(filterimage, [im.shape[0], im.shape[1]], anti_aliasing=True, mode="edge")
# Initialise arrays
im_filtered = np.zeros(im.shape, dtype=np.complex_)
im_recon = np.zeros(im.shape, dtype=np.float_)
# Apply filter to each RGB channel individually
for i in range(0, 3):
im_filtered[:, :, i] = np.multiply(fftshift(fft2(im[:, :, i])), filterimage)
im_recon[:, :, i] = ifft2(ifftshift(im_filtered[:, :, i])).real
# Scale between 0 and 255 for uint8
minval = np.min(im_recon)
maxval = np.max(im_recon)
im_recon_sc = (255 * ((im_recon - minval) / (maxval - minval))).astype(np.uint8)
# Borderify image
pad = 57 # Pad image by 1/8th of inch on each edge
bordertol = 16 # Overfill onto existing border by 16px
im_padded = np.zeros([im.shape[0] + 2 * pad, im.shape[1] + 2 * pad, 3])
# Set border colour
bordercolour = [0, 0, 0]
# Pad image
for i in range(0, 3):
im_padded[pad:im.shape[0] + pad, pad:im.shape[1] + pad, i] = im_recon_sc[:, :, i]
# Overfill onto existing border
# Left
im_padded[0:im_padded.shape[0],
0:pad + bordertol, :] = bordercolour
# Right
im_padded[0:im_padded.shape[0],
im_padded.shape[1] - (pad + bordertol):im_padded.shape[1], :] = bordercolour
# Top
im_padded[0:pad + bordertol,
0:im_padded.shape[1], :] = bordercolour
# Bottom
im_padded[im_padded.shape[0] - (pad + bordertol):im_padded.shape[0],
0:im_padded.shape[1], :] = bordercolour
im_sharp = unsharp_mask(im_padded.astype(np.uint8), radius=3, amount=0.3)
im_sharp = im_sharp * 255
# Write image to disk
imageio.imwrite(outputfile, im_sharp.astype(np.uint8))
def get_files_in_dir(directory):
dirs = []
for filename in os.listdir(directory):
f = os.path.join(directory, filename)
if filename == "into the mists": continue
if os.path.isdir(f):
for d in get_files_in_dir(f):
dirs.append(d)
if os.path.isfile(f):
dirs.append(f)
return dirs
if __name__ == "__main__":
# Loop through each image in images_local.txt and scan em all
# with open('images_local.txt', 'r') as fp:
# for filename in fp:
# filename = filename.rstrip()
# pipe_idx = filename.index("|")
# process_image(filename[0:pipe_idx], filename[pipe_idx+1:])
# iterate over files in input directory, process them, then save in output directory
directory = INPUT_FOLDER
for filename in get_files_in_dir(INPUT_FOLDER):
if filename.endswith(".png"):
process_image(filename,
os.path.dirname(filename).replace(INPUT_FOLDER, OUTPUT_FOLDER),
os.path.basename(filename).replace(".png", ""))
iVBORw0KGgoAAAANSUhEUgAABUAAAAdQCAAAAAA4JL5VAAAAB3RJTUUH4wsZDTEVpZ2aggAAIABJ
REFUeJzs3Vt24zqvBGC7V8Z55j+LfR46TiyJAKqAAkm5fz7ZJHVJbH8pijLz/L/HW3k+BmVYyXRl
9mBW0/V2g9OSb4takQ5QF7Jjqrt8+xuW/+ZuD3cHOoZd/A5ea67NbLEayPpxNdOZ2MOx8uvtcVlK
BZQiVnN8uk7U+BTqyWlWsu8fhPNVXj96FtInt/ET7f2M+4Vdnm671+rt2t7ObLEazHqm2tjJsPO4
L9D1671h2Buu/Wg+d9GTEq3A3z8s56l8/yZyjnKKoogKDPXb3VbH135CFdVpLEddv367js8ArZwf
ShOutvBZ13MrPOfRKTtSdbSNlGf+SHC4JDoD3aqGTiOUo5Ws7g6hXz9Vw35oZSOfuouiDVdFQwVU
ejLYJGFqlXP6zntQTcdRKoriiJYNTcZQp40nlKVVETfx2sDVr1ev4f7QygXxcws+5+jZjmeLbosv
AhwPL+Y0GUeZKIr1LRvaEUN1hGouhZajqVf59XjUpfxYPm+lZ0YsrXL7Xjg9nJlK0xSjTBQFrnV2
G+rH0GWE9oVQNpl+PZriJyViN585Iwt8avRsxVOm3b5sGuX3hBWUUoPzt22wTaCeAkNzMdSDUjbx
rrjmqZw2OlZ+bRA/1/GZHbsXw6c2etKAacS7nZuD8vMzVCVNhFEKUcTQ4q1L2UmjCfcu1eOm+N6l
t8qvYvycPnqfw2dj+FRGzwV2foKb16KRlA6j8AaSIFqIoeKR/ILbP3XTRsfKr0HtVD/vxuc2erKS
FeX7TDgv5fVj5iFNKQoi2mxoPoZ2E9p271Ji2uhYOQD0f3zm2hR69uBZwe8fgfNcipCyioKIIt2q
hn4CoT0hdFh5BXTimJ7rzLKa4rMtfC7SM+/fPyrnqXz/FlKOkooiCRPrFhuajKGZK54JQjlZ67BW
Ks+Afk78TLjaFj5lejKqpQWcSKfgUIqZ9LA804eiFMWDaNHQjhhq71N0p7zgK+/8bUpR5de5w3D/
pcpP4LNXTzmeSZda5eza+XC/Paqm4yijKIYo0KtiqB9D+aZ73v6JVB4BHb0Zq1IqRu8T+FwWPiFY
uvHs0G3lNYDTsbWeJuMoGC/xrnEQ9W9dioby0pH8HW//HFce68Ll7PYd00/i8056JszSMrfphdP3
01JhmmKUQ1Rg6PwY+lm3f4asBsvZ9cRPRSjdgM8ZesIirbRzUzbH5fdkFZRSlzjZTSBumw3dkdCm
aaNUCPWXs9s3fu7Op0LPPjwl4t2KzVGRUZoIo3AURTrWDd2W0JnTRqkQSi9n1xQ/V/G5RE9l9GQZ
K7N3ezcH5ednqkhKh1EGUcDQ6Hpny71L/MT71tNGwEXPU6WznF1L/Pwfn8LoSVpWo+8T4byU1w+Z
hpRVFEVUEUSjb8NrY+hOhNa6uqySy9ntO6afxucmenKeVfT7J+Q8le+fOekoqSiBaNHQSgzdj9Bp
I3aPVWs5u+V8ilJphs90+JylJ0Va3r9/Uc5jqTjKKQoi2m9obiQvI7R+KbTlC5t2CGWWs5uI6p58
VvSMOdLjmRVwopzlQymm0qOSd5RSFEMU6BXe/rn+3iXJgF0wji+HUHw5u31H7zfgU6MnoU0Spk46
e/Y93GuPqs/kvhlFYURL0+4+sXMm3kWEFsfx6RvoX5Wj5exWx0/RxU/pRdH8uH6+nimpGnhbdwng
dGSpp0lG0QudD2icXjc0iKGJkXyCUMGl0HkhdMwquJxdi5QUlCo+Z4dPiZ6teEqd2/K66ftJiTBN
MYojCvWsGyoeyZsbrbiDflIIvQB6r/i5nM9+PWGSeLtU2m2pplHezrVuaYJRfDyPIFo0NB9D2ZH8
/DvoJ4VQZDm7f5rPPj2V0ZMmTGHendwclZ/zL0rKXOP83QJFFDC0MGcURE3+kqcsbTaN49UhFFjO
bnUmbeezI3wK9GzCs8ze3d28FoWkdBhFEVUE0cjQTAzlL4bucgd9LYSe6g6AwtbNjJ978lkKnzo9
Ocxq9H0enJfy+hHTkJJhlEC0bmg6hmYuhrYSunTm/dQxWs5udfxcx2dX+Iwd6sCzot8/IOepfP/E
SUc5RUFEgW6BoekYmhnJtxK6eub9vS6xnF2LlBSUa/ncQU/GtLx//56cx1JxlFIUR7TR0FwMbSd0
w5l3eDm7e8XP7fkU6TkBz1lySo5Tn0wPSt5RdIiO9xUYmo2h/YTeZeb9vc5bzm6WqZvxubOehDg5
nProbNvzaMcdqD5ze2aiKIRo1dBsDLWbulcN2W3m/b3u63u74blgdTNR3ZbP4tBdHD0zWOmBW3gF
4HhoJac5RokoGvuI7M7/OnxgqG7WaAWh/TPv7wc3l7ObZWpjKOVZ7eFToSeMUUItJXRbXjZ9PykN
phlG8SgqCaKFoXyO0H9n5v29I7OcXc3U2WN6KZ9L9ezDU8Tdlmoa5e1cy5YmGIWjKNKxZqjX6o7k
2ZZNZt4FWg7qxsvZLR3Sc1DK+OwInxP1ZBEToHcnN0fl5/xrkjIXOX82QBHtNjQTQ/mLoZ0z73C0
LGppzCUNl7ObZGpj/BTyuVDPHjyr7t3dzWsRSMqGURRRoF/JUHUMnT/zLv4/72RHeDm7xfHz4/iU
6UlxVrLv8+C8lNePmIWUC6MEomVDG2LoPtNGtcmk1O2fP3VXQFcO6W/E5w56MqQV+PsH5DyV7584
5yilKIho2dBCDL0rofoQOqqDlrObFT8/g8+qnvvg+e/JeSwFR+HrnHDfuFfN0JsTuiqEZpezWx0/
2/ncWU8CtpyBU+QUHqQ8n+6WrKNMFIURbTPUveLJSqkitOWiZ2nIfq47AnqX+Cnic3L4lOiJs5MC
qovOXpIHe9eb+kztl1AUQrRuqDaGmofb5OalSghF6sLl7FaaykE5g8+1erbiqSZu8fj/eHgdpylG
8QE90rNoaDqGsi1b3LzUHUKD5exg7GodG+On8Jpons8IE2X05OHSUbftRdP3E1NgmmAUj6IhkICz
kaG5ifd73rwEh1A0mL5Xfb11HW2er9ti9C7kc6WebXhKxNuWzXH5Pd0qpcxFzt8tkA0UQdRtV8fQ
TWbeiSkicMg+2uN7P3o5u0mm/it86vQkGaurdzM3B+XnJ6hISodRAtG6oQ0xdG9CJ8wbHeqc5exW
xs/78NmrZwueRfnuD+elvH6kPKRkGAURBboFhhZi6B0IXTJvdNifvZzdXeJnO5+b60l5VsHvA+E8
lyKknKI4omsM5S95qgitXvScEUJf+2OWs4MF3PaSKM9qls+qnno88/79A3KeyvdPnHKUUhRDNO5V
M5SPoeYO73bzUmbe6FBnLGe3MH5+Pp8aPQnWsgIulfNwcMXMefoUEgdnFIURLRqqJZSlso3QWmVm
3ujQDV/Obo6pTFdOVSmfi/XsxrNbTnr/yAZtyGYdBcfocNeiof4VT/6Sp4xQBtaiq/ph/Gg5u1vH
TxmfHeFzrp4ZBlvonJNkL0cRi/rM7JSIovHFToGhuYl30TVPKm62/Nu40rzRMIQOlrNbFz/7Ru9C
Ptv0XIynVLktLpseT0LEaYZROIoiHcM+wQVPbQztvIV+45uXfqug5exWxs/78FkaugPioCi1jI9n
7qenvJ1d3VKeUTiKgogGhqaH8t2EfsbNS7+lezWmj+KzK3zq9GQNE5i3N5vD8nvKNUqJ8fnvBiCi
RUPTQ3l+vD6f0PU3L/2Wr3OH0Un01wlG7yI+9eGzrGcLnmX3bgjntbx+iAKkbBgFEQW6VQxNxVBz
o53v/2yuC5ezu0n83JXPSXpSmpXo+wg3L+Xnp8pKyoVRHNFWQ4Uj+X3v/9TPGx2eBqsx7TakX8Rn
T/gMLdLjWeDvM+U8l++fMucopSiGaNwrNDQVQ/mR/Mb3f3YO47/eG0YnhFTVqCRMvBWfM/QkVEsD
+G/IeSwFRxlFYUQrhspj6ApCcVf7540Ode5ydpvFTwpKUtUMn4v1bMdzppz0seoz6UBJOwqO0eGu
jYa6MZQmVHHRE46WDf9kk1bVW85uWfysj9535jOyQotnRsFGOWW7tnbUAWvOUSKKIoiGfSJDMzGU
JlQRN2f9p/dCCL0sZzdh+N4SP1vH9HfXM4GVns7ZFwBOx1N6+kzsEVc0DJlAn2C0nrt5iUybkhG7
ft6oFEIdaM3l7MSkdpi6I5/derbhKYRup4umh3ORaJpgFB3Qg0G0y1DhSH7LeaNC4LS7WcvZbXVF
lOmqqV7AZ8xOF54S8HZS0ypv51i1lBif/24gQjQ2NDeUVxLKVHesG1IJodQw/kudNW81eldeE91D
T86xunp3cHNUfs67IikbRglEa4ZmY6g3kldc8zSrJ43jM9PsTtXjP2M5u/2viLbyKQ+fVT0xpWba
eVc3r6UuKRdGwd6xtTVD+Riquea5fByvHsaDy9ntdUV0Oz6X60mBVtDvc+C8lNePloOUVxRCtM1Q
N4ayLVsQOu2q57EKW85ur/i5hM+W8CnRk0EtDeAHy3kq3z9pxlFKUQjRuqGZGMqP5BsJrQzZW656
HqsugGqtbIifm/HZp6c4eiYJ/HfkPJa0o4yi8cVOAFp/J+oYOp3QhhCaVnVQBSxntyp+ElLuyGe/
nr14TpBTdIjqjLpXko5iY3S4ZwRtxdC9CMVdLbAquYP+u8TL2WmviE6MnyI+G8KnQE/YngRSPXT2
gTzYs9rUZ2KveBRFEK0amoihZouI0No4fkoIjasOgGqtnHRFdEM+m/VEKeLJ0iK3cPR/PLSK0wSj
sKIAoiVDtTF021voSyE0M4wPlrObYGXL6F0zps8M6kt66qIni5cKuy0vmb6fVB1TnlF0QB9fEo32
lDXUi6EWlZPnjQpzRJ1zSf5ydhtdEf0APst69uApMG9LNsfl91RrlOID9N/+QPd6EA0M5WNo6z30
eN5csVoyUEWuxiTuNnFIrxrT51qiRpmeHGVF+G7k5qD8nH1eUlJRHNGqockYKroYeuepd3YY//VT
NdgQqVJH0uqQXqLq5PAZQqTHs2TfveG8lNePk4SUG9JjiMa9fEOTMTQzki/PG62ceq/nUns5u3ZS
J8bPfj5X60mYlufvw+A8lxKkTBiFEe0yNBdD584bTZl6rw/jreXs1sTPD+SzpqcYz6yAHy7nqXz/
tAlHCUUhRMNOFUO3J3Tfqfe3Db8ea+JnQyRdxWc6fCr0bMZzrpzg0WqzP3DJOgpe6UR7RkE0MjQR
QzcntDKZJAyhfzccL2fXTWpH/GzlUx8+BXrCumUY7KOzvGd7Bx20cpc43zeCtkEQLRmaiqHmRp2E
6sfxHWP2U9VoOTtp1vwfn2Qb0t6Kp5rOiSn2fCgdqBlG4SgKdCwaKhzJ9xGqH8cXuESH8YPl7LaJ
n02jd1LV1Ni9Ej5letJyyajb5Zrp4TwEmvKMwlE0EhIxNBVD+ZG8tUXX1HshcOZtRIfx1+Xstr4i
2oWqlM+CnqvwlIi3C5tG+T29IqU0o2AUjbsFPbJD+eZ76KeN43u/9T6uApaz67eywdTeMX3P0F2l
JwdZlb3N2RwVCaX4Zc6f7hiipSCaHMo71zy3mDeacNWTmXp/K6rVmCaQegc+G/XU41mj74ZwXsvr
h8hCyoVRDFEoiCYNVcbQ5YSum3p/K1+n5sGhdFX6SFpHdRKfM/QkSCvo9xFwnksNUiaMwoj2GboV
obir/SE0UxUsZ3fH+NnKZ0P4jEQS45kF8CPhPJcCpISiEKJhp8jQRAxlB+wCQmvfQtKG0Mwwvmk1
pinx8yZ8tuvZjOc/IeepfP/MtKPglU60ZxREgyueH3f30h4h9LCvr7fqwVFbqxr4FNQm+FyoJ6xb
hsFmOmW7L0wF+YW7xPm+EbQNgmiXoV4M1RCK1+qvejaO2U9VznJ23VYuHr2ToXQ6nzEvKEAJqBro
bNT4umspqRlGYUUBRGNDs0N5mtA7372UH7N7w3h7Obv7xc9GPjNj94KeuuhJsyV0buHY/3hoCacJ
RtEBfSRkuKd8DBVdDL3v3UvZYfyrxlqNCavqj59785kMn1U9e/DUeLfjFdO3c6paSjMKIloOooGh
7SP5u969BN3s6VwI/fr7ZHCouGZR/LwBn416YkBxjNXR25HNYfk90QqlJKPgeD5GNG9oLobuQOiC
EMqgOl7Ornn4Pil+bsjnDD0pzGry3cbNQfk597Sk8HXOn94Qon2GbkWo/Kpn85jdQHW4nF1vIp0U
P1v5bAifEj0Z0Qr63RnOS3n9MDlIKUUhRMuGJmIoe81TQOiqEKocxv/3GK3GND+RbsrnxPAZiSTG
MwvgR8F5LgVIGUURRMM+wRVPZQy19jaR0BUhFEL1+fhPtxoTCF6BVLwjg6qOz4V64rLlDPxoOU/l
+2elHSUUBRFtMdSLoVwDRyjuaoXV9FxSFlVgNabmRLo4fqouiWb5nKhnRsE5cqaOUpkFAkrOUVzR
cKReNpSPoexInrmHvvadzfbFPrOongGdPnz/DD579FyKZw+dwr2Od6Vm9ZnYK3SpE+sXdfGH6/+7
e6lUhaAaLmfXm0gnRdJlfBaG7jE1IEa0WVI6Zw/+T8cTecozikZRDFHf0ORQfmtCd544ei/Bakzz
E+nt+GwJnyE7PXiKtNvoiun7qZQxpRkFo2jczTc0OZRnB+xTCd154uj96deh6do5V5W3smH0ruBT
HD6n6MkxVkdvIzbH5fcES5Tilzl/umOIdhmaiKHWJlveAJoOoQpU3eXspifShvi5H581PfV4FuHb
3s1B+TnntKRcGMUQDXtVDFWN5De8AXTKN46sGm85u+nD93vxuamek+y8o5vXUpSUCaNY3yiIpg21
m9iR/I43gM4exv/W2KsxTRcV7VY0dVs+BXoSqqUB/Aw5z+X7p8o4yioada0aKoyhkwlFWVVOHJFe
Xjb7elVcuwBVN4yfzXw26SmNnjkCPxPOU3n9kDSkhKLh1c7YWXcXyRjaSGjlqufKpeq8A746WcvZ
zRa1Quod+GzWE9Uto+BsOZ3jlSZ/EudAHg9WVBBE84bOJ7RhHK8MoaVYaixnt8EF0VmR1KqeFT7L
evbh2UZndsfudg26PhM7RnAE+9UMpWOo1WDUNxE6P4Rmh/H/PR7tqzH1x8/yxc92Pjv1BCWiwdLS
OSfDXo6iEpVnFI2iMaIFQ/tjaPmbnOqJI+HdS8Ceno//Ho+vDYbvBVJxU1v57NBTFT1JvVTYbXDJ
9P0U6pjSjIJRNLwkGuwnZ6gTQ+uEMrNJ0omjvvvljU7/jZazWy/qtNH7Qj6LejbgKSBvAzWN8nZm
JUtJRjFEq0HUN5SNoY2EqieO1lz2PNQgy9nd6YJoG5/82D0dPiV6zrRzXzdH5eds85KiQ3SiMxJE
XUNTMZS9GFrNmzPG8e2XPQ81otWYFlwQLZqq4VMfPiOM1HgW8LuXm9dSlJRWNOob9nENTcVQdiTf
RKh0HN9+2fNQEqsxbXFBdG8+F+pJqJYF8O5wXsrrB0pAyigKItpiaCaGziO0/QbQvmH8EdC5w/dC
/KxF0j35DFySRs+cgR8n56l8/3y0o4Si4Ug9djYwNBNDJxNaGcdjIXTeMD5Yzm79BdGG+NnK5zI9
Ud0yCn66nMeScxRWVBBE/eE6H0M7CS2N47OqCr+0GdSQqzG1XhBVk9rHZyJ8tuoJApdwsI9O6Z7z
80F2eSb2jCoKINplqGLeqDpkxwNncwhNXfY81FRXY9r3guhd+Kzq2YSnWs7eEHvZu0zURBxFIibU
rWQoSyhn5UpC8yG0IZb+ALrj8H3OiJ5DNTF2T4dPVfQk8VJZt3Lgfzi2QFPiMudPfwzR0NCGu5fY
Efu8uXdwHN86l0TV2MvZ7SjqDfns0xPyiUNMQN6Ol0vfzqlkKTmox9AtBtHcUH76TfSlMTt2QXPa
Zc9DjbWc3ZbD94bRu2JIn+OzpKccz6J7O7I5LL8nmqaUYxSKomGngqE0oT0TR/K592wIrV/2POxH
uhpTr6gN8VPC55Z6EqJV8LsNnNfyOvUkpMyYHkW0xVBnwN429y4fx+/wpc3xfr4enX7uckH0RnwK
9MRVS/t3YzjPpQIpoSiCaNFQZQzdbeJop8uehxpsObv18fNmfPboqcQzR+AHwXkuaUhxRQFEoy65
S5502tyQ0NYQygzajzWD5ew+LX628ZkIn616orplFPxgOU/l+yclHYUVxRBtMVRx0bNOaGEcvziE
Dk29Lmd3jwH9p/E5S08ewk46JftOzwa55ZnYN3St8xEKGffwDWUJ5aysErpJCFWZelnOTjSgF3aq
kFoe0qvG9JXwGTKDOURrJaazS+LBfmWm8oyCUTS2NjQ0EUPZkTxHKFp5n68cAfsJl7NrDJvS+NnC
p+zSZ1rPNXiqrFs18D8ct64pzSgWRcNefofcUJ6+6Nky957mcu5XjgBTe1ZjahW1YfSuGNI3DN01
elKKCcjb7XLp2/mULCUZhREtBNHUUN6+6Ln29qXCOH7iMP685/pqTLPj59347NITcYqxrOjebmwO
y+9JpimlGIXG80gQTRkqjKF6QqW3L+nm3mlT3wEVaTk9ft6Tz249CdEK+N3CzUH5Oe+cpOCVzp++
AKJNht6M0NUhlDbVW85u8YB+3Yie5FMdPgOUpHhmAbwrnJfy+kESkBKKAohGXQJD6RjKjdjrhBbG
8boQqjfVWc5u5vD93+KzVU+YtpyBHyPnqXz/XLSjuKIYollDhTH0rrcvzRvGD5azmzh8V8bPhtG7
hs+99cwo+KlyHkvOUVjRaKjeZKgTQwWEopXzv7XZNoz/7WKtxnSLAT3arcwny2SKT1+odXi2ylne
eXo2yC0ZR5FrnVC3oIdvKBtDb3L70uob5s0uX9/ncjm5RI1sQD9hRN83pM80lPXEHGK1UtPZQfFg
nzpTn+z+wCgKIZoz1Iuhiouhk25fyobQtkG7tdF4ObuJgbQ7kc7mUx8+I3Y68FRRt2TcfzxonVOW
USyKhr0iQ/kYqhnJT7l9afO599+K4XJ2dxi+z7kgKuNzqZ4UY3Xz9rpa+nY2JUvh65w/vSFE84aK
Y+haQmWXPefMvf9WDFZjmhhIl8TPNj5n64lAxWBWg28vNofl9xSzlFJhFCI3klZuKDdirxOaHsfr
Qqh+7v13L6nVmKbGzw/ms1lPgrS8fjdwc1B+zjolKRNGkSgaBNG8oVwMvcXtS20hlJp7/+3StRoT
sFHzgL6HT3bsngyfZT1x15IC3hPOS3n9GDykhKIAojVDEzHUsBLHsoFQ3aA9EzCZufffCsVqTFvG
T5jKNXzm9RTimULwQ+Q8le+finUUVzRGNOjhGZqIoVw9QyjK6twQmhrGA11OgG4/oJ8TPxVD+kxD
0CbUM8HgZ8p5LClHYUWDmBn2yBnaePsSrOVdvrXJdwmWs5sHqlLUHfhMhc+inhhxPISNdJZ3nZ0O
csuT3zWoKBRE04aahG46977dzBE69/5b9KsxrY+fO/OZ1XMNnmI5OyAe7FNlKh9HgYudSC+/gzte
/9/tS1RNdu79txRXY+obvkutnMvnpnpSfKmsWzHuPxyzrikZR2FEC0E0Yyg3Yu8htDeEpgStplLx
akyNWIpH72U+heGzpCdC1Fw7t7pY+n4yFUzhC51wZySIJg3lYqixq4Y7QHtvX1IN46lU+gPowsuf
vQP6PfhMhs/AIjGeNfm2cnNYfs4wKykVRpEoGvUJDE3EUKb+frcvSYbxFLLmcnYLQVWKOpVPcfis
64mbltdvfzevpSYpEUZBRLOGJmIoN5KfQ+jtZo7eKqzl7LYKpNpEipuq4XORnjBsSQHvCOelvH4I
HlJcUQDRFkPZGLr0DtDtZ46sCt1qTCkbN4mfu/Hp46TDM4XgR8h5Kt8/E+sorGiMaNDDN5SPoS2E
Fi6FCkOoZuYo3Oa7QrYa08z4uR2f/Ni9T0/QtwSDnyjnsaQcRRWFEM0Z6sVQaiTfQejsL75rZo7Q
bb5SFk4cvktH7/jFT+IyKR8+V+vJStgmp2TH2RkhuyQcRS52PiIiww4ZQ8mR/Lh77XtIHzdz9FYx
WM5uJ1Cl8fPmfEbaQBqRZEnpbHL4ulsRqU9yZ1gUDamNDOWH8oqR/Ko7QLecOXqrAJaz6wF1j/jZ
xadaz/l4arRbM+o/HLWqKckoFEWjTm67MoY2EbphCFWBea5oWY1JFEiVou7OZ7eejGRV9daoaZW3
sylYiqXLt84Ioukg6hrKxdAWQne4fSkzjEdnjt4q6NWY5g3fd+eTHbu36KnFs0TfXm6Oys8ZJiVl
wiiCKBBEE4Y6MdSwkrhTaQWhuRCaGcYnYmp5NSaNlr3xcyKffPhs1XOCnfu7eS0lSfEwivQMgmjW
UMVIvoHQ7DgeYXbNMP4A6CQ/N4ifk/lMhU9fJiGeOQLvCOelvH4IGlJOUb9j0MM3VBZDGwidG0K7
hvF+hbuc3bJAKhS1YUQv43O9nhkFP0LOU/n+mUhHYUWj651RD/eaZ+fcO0OodBy/98zR2xNnObue
tDk5fk7jcyM9MeF4Bz9RzmPJOAoqCgVRsaH2iB3Hsjhm102+q25fSkwUXSrenldWY1o5fP9X+YwQ
68Gzh07ZXpNzQmZ50nuNeYR6RYZmhvJMDJ1D6NwQ2pFK3/ahXI1pHqhYpwqpCj7Vekrw5NRSytkX
YC97lojKxlEsikaIuu3aGDqLUExVVQidPIwXrsY0b/guHdDjprbz2a0nRZjCu1WD/sNxi5qCQ/S3
3gii6SDqGsrF0DqhGKuYqrvfMW9UfH0f9HIW/nNN2uyMn5XReyOfLXqK8Syyt0pNq7ydT9pSalCP
IAoE0YShTgxtIbQwmzQ1hIqve75XDJez23r4Lo2fLSP6RPjs1RMnrYDfbm6Oys855iQlwiiIaIeh
1Eh+XG3Vpi97Ll7wU3zd873DaDm7VcP3D+czFT59loR4Zv27g5vXUpAUD6MAokEX39D5MbR/5ugW
1z3fnzetxtQ1fBeKugufjXqCuOUMvKec5/L9U9COomEUQzRnaCaG7k/oDa4Lb10HAAAgAElEQVR7
vh82sRpTT9qcHT9hKhV8LtCzDc/PgPNUXj8UBykyToe66Q21GgSEoqzKxvHbXfd8rzivxqTgct7w
vT9+MnwKw6erlAhPWsJpdBoHSk8BsUdmDgRG0RBRv4NrKBdDjV0tmzm64XXP94poObtVw/cklvvx
qQ6fkWKQciSFDXJmduluo9SVHtdjiiKIeoY2x9AaodKvbW5+3fO9yFdjmjd8l47e9+GzW0+KLhmd
7en1fAABqGQchQb0/mDdb5fG0EmE5gbtbdc9M4N0fxfF1ZhuGD9hKvFKls8WPdV41smbNuSPDl7C
FByj/3aO+kZ9coY6MbROKHrZUzhol4TQeJsyqdRqTKvG872BtMrnTfTEOavBt5TNcfk9pSylTBgF
EZ1nqFE/robn3qWETgyhYlKd1Zi28bN39L4Jn3k9Y7Fm2Lmhm4Pyc5YpSfEwCvQMnM0aWo+hRUJl
43iAx0l3K3kdfgGtczlNy+742cVnKnwW9YRhywl4DzevJS8pp2iIaNpQOoa2ENo7jm8ZxvOjdm8L
czm7NXlUFj8X8qkMn65PMjwzCt5VznP5/jlIR2FFQ0T9Do6hdAw1R/LiMXvey1WT7wlSf55by9mt
Gb5Pjp878LlYT97BT5HzWDKOoor6OTPqkDGUG8k3EJobtO/zpaOQ1J/nbasxLRzP78dnInyW9ISQ
YyXslZPce+oaJnwWxN4xRZEgmjTUorI8+d4+c4RFzjWj9vBC6GuXw9WYeA13ip+34bNHzwY8tXRK
9jbeiYrVJ7m30EekU9JQNobuReiqEFoZtR8qRqsxhTyuGr4nsQSt7OGTD58eMILoSfmloXPaqP94
oCqnHKNQFA1G866xnqFUDG0hFFNVc91z8aj9UPE1JW7OG75LB/RlU7Xhsx49Ccmq6E1DEzuFPKYU
o0AUrQRReu7dxFJ+/xKm6srJd9mo/dDhupzdHuN5FaiolR0jep7PTj1x0Sr2beDmsPycV1JSKF/+
do0RTRqaiaH4SH7J/UuzJt9lo/bD88tydku4bIufYj4VY3e9nkI8s/7t6ua1VCTFFY0RDXpkDLUa
mJH8sG/7/UtzrnsmRu3xsL68GlMHsJPj5+Z8FvVEbUsZeB84L+V16iyksKIQollDJTEUr22+f2mb
yXd+WH8CdM882ho/J/Kp1lOFJ8/gjeE8lxSkqKIhon4Hb8Ded/+SOnFuFEIVmfP43F/Obg8/P5zP
5NA9Mgwzjpbwg+g8lr8/GMMoqCiCqGdoYii/PaGqECoglc6cx+fucnZlTxXAIjWQjKCLQyGKlfLw
qdCTpLBHzvJeE5cyvfJk94op6g/W/fbEUN7YZFxtEAr2FN6/lAihilE7mzmPzyurMd1qPF9IpOVI
mgifBT3leOrobED4uksFqWQcDUMm0CdnqCSGDncy//6lnhBavxDq7rGwGtOa4fseo/dePvN6ivEU
gDd/yH84YklTilEBollDm0bye96/NONCKLEBvBpTPW4ujJ8L+dxKz1l2zlfTKm9nkrUUG6TDXf3R
fMpQq8EcyYsve6KEZmoyo/Z65sSJla3GtGj43jx6b+IzNXR3VRLimddvHzdH5efsMpISYTSOon4P
31ByKH+/+5cAU/szJz6s/3od4XxE7rnAT5GWKwb0pJOZ8FnTE5UtKeDecF7K63R5SOEwCiGaMpQe
yle/zDn7/qXUHaA8qeVh/ffz8XJ2G3jaB+okPtmxe5eeoG4ZBG8G57kkIUUVDRGVG2oSisfQLe5f
4rvww/ji5PvP8+Fydlv6qYqfS/lMhE9PKQ2evIM3l/NUvn8aylFQ0QhRt901lL0auorQrhBazpxZ
MU/PR8vZtXua2GJy/JzL50I9SQrnyGkcJXPtkj8qcZR4oP7dKx1EvQF71+Q7Tqjsumdm1M7PFIky
5/H5dTm7crzceDy/ks+peiLQcRiK6ZRfMZDp+uR2B0VRIIgKDWWG7CVCheN4QQhtvuFz9Py/B78a
k97TJlCVohJ8qsJnXk81nho6u7Praf9VTzlGkSga9MkaysTQ8X4mELpq1E5nTnKD54NejUkfN1fG
T9DKLj6X6ElIVkVvzoA/PHQeU4ZRJIr6o/mUoXYMxatxQjFVm0Lo2hs+jefF1ZiWDN8nx88qn8rw
6ZKkxLNg30I2x+X3hHKUQqP0365+T7+HbygXQ5mR/PzvbfaE0GmT7z+lthqTfvjeFT+1o/c6n/P1
RF3L+redm4Pyc468pHgYhRBNGSqKoQShunH8Z00d/RbpakxL8ijSJS3qZD679ARxSxl4Bzgv5XXS
LKRoGA0RbTC0g1Dp/Ut3mTqinr8D2u1ny/C9czxf5FMXPj2kNHjyDN4SznNJQQoqGiHqtruGUjF0
XN1PKILqJlNHlef2cnbz42ZT/EyP3qfyuVBPlsKPoPNY8AH6+xYQoukgardJYugmt4AmRu3yqSP6
+dtTczm7WwzfO+PnTD5b9ESc4yxskjO9W/5Kpl+e5G6hKAoEUaGhswjd6v6l6VNHb0+zqzHt4KkK
1Aqf4w8/U+sAktdTjaeOTiXCg30pTOXiKBJFgz5ZQw0rmcue2uue06aOpk+2X28A/X4kWo1pizyK
dEmL2sXnEj0JxergTR3xHw9W4ZRhFImi/mg+ZSgXQ/Ha/aeOZn3TPX7esxrTBE9V8VPNp2jsnhvU
a/EsyTeVTav8nkSWUmiU/tvV7+n38Fr5e0DHWN5m6mi7zGk9V6zGVOZRET9bR+9FPrfRE1Utrd8W
bI5KiVI8jEKIpoIoG0O5kTxIKFKVGsd33L+U+WY7/zyxGtOWw/fO+DmXz6SeKjxzBG4L57W8TpWG
FA2jIaJhEOUNrY7kZ08dKW5X6vhmO7f//x6j1ZjUXi7xdHc++fBZ0hPzLaHgjeA8lxykoKIIojlD
yRi6hFBNCF0/jEdE/VrtZ0v8TGIp53NK+AwQg4yjIbyxnKfy/ZMwjmKKRogGhmpi6Li7mtAcqoLM
OfnC56D5vJzdbC878qgukKKkKvhM6TkfzxlyGsdIXL2kj4kfIwyZQCevmR/K99wDiqgqugW04575
7kyqXY2pzOOs+JkevVf5pMNnq56Uhlo6xdcLVLg+qb1BUdRNmm4zPZRnRvJoJaaq6hZQfeZsmTr6
fVpajeke8XN/PvV6avGU0NkbXU97L3pKMQpE0TiI0oZyMVRNaPZSaEMIjYRsmTr6LcxqTHcYvstG
7+CAvpHPRj1hzIrqzRjvhwdOY0owiiEqN7SHUOGl0JYQ2jyM50QlVmPq9lPgqQrUEp/d4dNVKSRr
gp3L2ByX39NJUQoN07GOPrOuoVQMHVcPa5vvov+Ie+bdZns1pqKfZR574ieE5XI+m/REZcsJuJmb
g/JzhrSklKIRohlD+2JohVAEVUEIXX3h02tWrcY0P25OjZ8dfGr1FOGZUHB/OC/ldcocpKiiEaJu
O2+oGUPlhKbG8akQSo/Sey98Ot2/fvucNqGebzB835VPVfhs15OG8IZynsr3T8A4CirqBs2g3TOU
iaHWSF44aB/xGNfEps6/Zz7b3VjObrKXHVzm/JzD50w9EeZICu8v57HQjkKKAkGUN1QRQ8WEZmr2
u2eezaSvp+Pl7LR+luPmv8Fng55qPDvkLO2TvpjpFdLRCEigj9jQNYQu++Lmugufb0+Hy9nVQNwy
fn4kn649AEyEXSo6xQRfd1cn9UnsB4miPqK+odxQfmtC9SG0+8In1Dxazm6v4bwCWKQLJmqRT52e
1eiJS1Y1b+6A/3C0gqbQKP23a4yoa2hi8r142bNEKIKqIoSGpLYO26Pm/x6P4XJ2e/m5V/wskcry
mdRTh2eBvrlqWuXtLFKW4mE0RjQbRB1D8Rg63Mn62ffVFz6Tw/b3p9XVmJp5bfF0Kz5n6wnKlgRw
DzdH5efMeEnRMAohqjTUjKFo7erZd/0XN4sXQklBH9fVmPbyc138VPOpCp8lPTHeMgjuC+elvE6V
hBRUNEQ0bSgTQ/GR/D83+65uPq3GFAj4AcP5jfiUhk8JnrSDN4LzXDKQYopGiLrtzsTRZjcwbTP7
Pv/C59tzfzm7Vj+XDN9vzGdeT4Q5ksIby3kq3z8J7iikKICo1ayLoVsQKgih7DC+/cLnW3GXs9tq
OK/wFOmCidrEp15POZ5tdBI75q9jgkeHdxwO1eM+GUPtGDqFUARVRQgthtLeC5/Hp/nVmBYP59fG
zxqfG+nJcCijs7yj8Q4ErFKMIlHUUdJvZQ0dV9cITV0K3XH2XTpsP/ZOr8a02M9b8CkJn1k9lXg2
iScux4MUOGUYjaOo3yNnKB5Dhzu54ey7WNTSsP39ubkaU6ufW8TPnficricqWkW+KWoiR89ZijMK
ISo11IyhaG0zofoQuvZ+Jbt3cjWmveJoW/xU8ykLn55NKjyz/q11c1R+zighKTJOf/Vzu7kdXEOZ
GIqP5FtvYNoghDYO29+bJasx7eYnIOE+fM7VE9MtY+B+bl5LVlJQUQTRhKGKGLrB7HsE5H2G7e9P
odWYpJxWeZ2VR7FOTXym9JTgSTt4Bzgv5XXSDKSYohGiXnvG0CmEZlCNTdV/7aiWSVO9kdWYto6j
CU9lNdP5zOuJMEdSeEs5T+X7Z8AdhRQFEM0Yuo7QtnG8eBhfuxCa6s2vxlQDcvpwXgUqWIWTOk9P
QDoOwxl0no6RuHpJHww+BqJogGjGUHPIrp59z0VOIHO2369UNJGLqP89HonVmO4+nM+BupzPrJ5a
PKVyUjvzO2t45eJoFDPDLjlDizF09ux7OYROHbZzEfX53+Px+Kr5uVcc1cTPCXxuoyeMmIDOxtx6
3nUJVCKOYohKDSVjaDOhG4TQ4rA9EToPTy/L2e0TR2d4mqzZhE+PpJCrOXbOGO27R81aigzTwY4u
s66h9RjafAOT5i568bC9O3Qenp6Xs7tPHJ2URyfxOVdPkLW0fmvYHJbfU0lQCofRMIp6QdRuo2No
N6E9d9F3D+PFofPwtLIa01ZxNOFpDtSJfLboieGWInAjNwfl5+xYScEwGiGqNnQbQvUXPvcOnYen
hdWYOuOo3lNV/KzwKQqfjlMKPHkG94bzUl6nS0GKKRog6jV7hhIxdFirvQd0gwufS0Pn4ekB0G38
XDGcV/LZGD7TeiLKsRLeTM5T+T57wlFI0RhR2tB6DB3tIXsPaM+Fz9ZhuzR0Hp46y9ltw+mU+Jkd
vXfwuURPCsN7y3ksrKPRUP27zxxDayN54T2g00Oo9rvu6af2cnbLOI26T/F0Bp9k+MzqGWPHcKil
U7A39oqmVZ7M3oAo6jubM3SMJXrdEyQ0dym0Y/adDJ2TyDw+NZezezrPSPLmxtGEp8maDj55Pafh
qaCzIbmed1kDlWE0jqJuD6fRHrLXpo4KhCYuhZaH7eJbPpnEen5qbostZ6cUsXn43hQ/83wqxu6Z
MT2gFcpZib3Zo/3D8ZKa4oxCiGaCKHcTqKFldqodiZyjmu5huzZ0MhubjePl7BoH6L1xVOFpP587
6Am6luVvNptG+T2NBKXAOP2nn9stZygXQ/GRfCOhu80dCb21IulwOTuhn1JOp8TPvfhM6anBM2Pg
Jm4Oys+ZkZKCikaIRoN51tDSSF5I6PQQSiLYdl309Wy0nF2fn+K82eCpMJASfLLhs6AnRBzt4L5w
XsrrVBlIMUUBRDOGUjFUS6jkwqd42L7uls+hoIPl7Kb52cxpV/ws8NkePn3IEOZICm8k56l8nznu
KKRogKhvqCCGDjvv9s1Ndti+xw1LY0Gvy9l9ip/35jOhZxlPCsP7ynkspKOIoj6iTis7lGfuo+8j
dH4InXaXPCDoZTm7VX6SHob48Z4iXTBRcT7J8JnUU4unms7C/sjrmeFJgPuLxuphFzuIkkN5fCSf
/+YmkDnrYpJzRYtC50DQ83J2BfRKAXPD4Xw2kFb5nK0nDpiCTim/153VSCUYBaKoN15PGMrE0Dyh
CKqCG5jm3vJ5mkE3JtT5p8/LcnY6MDs5neHpZnzm9JThWWNv4nD//VBZTHFGwyjqdsgYuoTQnhuY
yGF73+x7AdTnI78aU+N4XRxHu/IoWIWTyofPip4ga1n9JqoZn0HCUiBi/vSLEE0ZSsTQYS1MaO5S
qDyEFkOnblRPbYqvxiQEc+7wfS2fjeGzoCekW4rA9W6Oys9ZkZKCYTRCNGVoPYaO9iC7B7Q/hC6b
fWciKbwa0zQ/SQ9pLvtG7yU+hXoK8OQZ3BPOS3mdJgUpFEYDRL1m1lArhmKVM+8BZUOodBg/JZKi
qzHt4ucm8XMxn2k9G/C8iZyn8n3WhKPhUD3u4wRRx1A8hkoJXfLld+3c0QxBJasxFTbVxtEOT6V8
MmN3tZ6AdBSG95TzWEhHkSjqI5ow1IyhhYuhC7/8rh3Gu72l0+3GU/1qTI15c0X8bOdTFj5rejIc
yulM7ZC8nBkfH9whoKjDZGAoE0PxkfxOX36vfu+o0Lsy3W41jldjWuRn8/D9PnzSes7CU0Gnit/B
fmqmMoyGA3q3g92oiaGNhC7/3tGi6XarcbgaE2OiEMxeThOeJmua+OzRE+WsxN6s0f7hOElNcUYR
RBNB1DZ0BqFxTcPc0R2m243G0WpMW/q5afws8NmvpwbPtH6z2AwPn6AUZTRCNAqilKHWmB3jMhk5
RzXssL35yuecSDpuHKzGdEc/G+LnHfgs6AnpliJwsZuD8nNGrKRPaCMA0YyhxRjaSej8G5i2FfS6
GlOXn0og5fETsLGfT52eAjx5BveD81Jep0hBCikaIOo120N2/dRRmtDY1GIIlU63N0wWWY3cakxt
YGrz5pThfF5Uhs/E0N2HDGCOlPAGcJ4LDymiaIyobSg5lIcJzV74DCOmfNjeOHdEXer0+g4aqdWY
Fvkp5jThabIGD58kn0k9xXjeUM5T+f4JUEejsXrYxTaUHMqLbwJFUP2kuSNhJGVWY1oE5o7xU8vn
HnoSHurppPfIXs6MD47tEYiiTtTMGGqN2aXT7//W3JFg9v31jFiNqctPad78dD5zeurwlNCp2Mlg
H0VTCUbDKOp2yBhaHMlrCOUrxHNHskud9dn31zPRakyzBvcbxNEZfCr1VOFZUm/KaP94kCSnMKMl
RGlD8cC5mlBt6GQy6cy5o5+iWY1p0eB+RfyEsET51ITPvJ7Ndk5hMz54glJgoA51c0bznqF4DB3u
BSUUQbU8jl935VM4ULcbJasxLfJz1/hZ4nOanphuGQOXujkoP+dDSkoo6vTKGFqOoVidaO7oNlc+
OxoVqzF1De5742jC01V8JvQURE/awd3gvJTXCTKQYoo6Sj5cYnlDmwlNjePZEMpd+fQvhC4WNLMa
UxeYU4fvktH7Uj6zegLOcRRuD+e50JAiiqaDqGPoLoSyw3btlU+/d+dNnsBuE6sx7TianxA/k3zu
pWdsHaPh7eQ8le/zBx0FFPUR5Q21xuxDGkfzROvmjj7tyqfV9Xgb0+9JoM/28FMePwEbISx7+Mzp
qcRTTie9Q/J6ZnxsbIdBzox6ZAxVx9Dc3BEr5sdd+bz+2h6Ph7Gc3Xo/pXmzI35O4HOqnjBgCjqb
9lEzFWc0jqK2kwlDrRiaJhS5p0nx1c3alU93GL9e0Nez0XJ2Ij91YGqH77NG7yifmvDpoCTCs8Te
jNH+4RhJTWFGoyjqtXuG4jHUGMlnCa2P4yNSV93zmbu4CT4bLGc3w891w3dBHO3nc56eGGxJ/mao
CRybtzTOmD/dAkRpQ8sxdKvp92nD+PyVz6Kg1+XsdhvNt3KaiZ+L+EzoqcAzgeBKN0fl53w4STFF
A0SdZt7Q+YRWx/HsXNKKK59EQB08C5azW+Bn5/BdED+FfCrCZ1ZPBDkWwt3gvJTXCRKQQorGiPKG
wjF0VCkjtD+EUlc+eybYE1c+f5/5y9nNGM0Lw2k1jsYdcqB2hc+kngB0nIXby3kq3+cLO4oo6iPK
G1qMoRirM6bfG29gWnfl8/eZu5zdDD83Gr5LhvP5QErymdMzto7R8G5yHgvnKKCoi2jGUPVIHriD
STH9/vlXPn+fecvZLR/N+32bOc2FzTyfO+iJgyimM7E77oJmeGxsd8Fg/eE5mTB0XG2M5HOj9o7p
9+KVzyl3LNWufP4+c5az+6jRfIOnG/LpOBQRBRNWp1OD72AvFVNxRsMo6inrGVqMoUun30shdNZ3
NXVXPn+LvZzdPz2ab8ujBJ+knoXoCYpWgW/KYP/9IDlMYUajKOoEUXNTMoa2EsqO48UhdPNx+9sT
czm7vUfzNT9DDNv4xKWkImkhemKy5fybomZ8bNrSMGP+dnN6ZYKoaShMaHLuaPn0ewHU+eP2t2fW
cnar02gF1wVxNM+nQE8HKp8wBLgEgivdHJWf86EkxcJojKht6LjFCpwgl6P99hCqnX6v3LE0fdz+
9sxYzm61nxPjJx9Hc6B28ZnUE1COhXA3OC/ldYIEpEgY9RG1DTVbGqbfp9zB1HnH0lbj9rdn4+Xs
/p3RvCJ+Svmcoacaz+3lPJXv84UdDWJm2IU3lIqhKkL1dzD1ffFo7bj97VlxNabtRvPF5oSnyRoB
n4khfdQIdUh13bBQjgJR1BmvO8DahqIxNH8TaGIcr73yedNx+9uz2mpMN0ujDXE0yyc+dlfqqcNT
SWd6X9Q1zeDw0L7CKJoLokaDFUNHXIoufMaEFr/9TmXSwri9NXW+PyutxrQ8jdb8nDR6L4znuVqv
IWiLm+l+fTuw91QQFWY0jKJBECUNLYzkV93BxIVQFagTU+f7M91qTDPSKNVXHUfn80mGT0cmCZ4F
+SaN9d8Pk8IUZTSIol6zY2g1hmoILd9GX5t+Z0BdlDrfn8lWY9p9NF+On5vwKdcTsi0H4CQ2o4PT
lIYh86eXjyhrKBdDZxJaC6GTxu3TUuf7M9VqTMvTaI1TRfyU8qnSs44nr+BSNwfl53woSSFFfUSd
Vs5QdNCeJpQdtk+cfveD5ZLU+f5MtBrT5mm0ymkjn/XwmdQTYI6UcDc4L+V1gjikiKIhorShaAwd
7UF0BxM9mTTvtvn1qfP9WcdqTLun0RlxVM4nHT5relIYbi/nqXyfL+oooKgzXvcNpWIoVtlG6LwQ
unnqfH/WsBrT7n6WuQS0zPOpCZ8eaUI87ybnsVCO+jkz6mAaSsVQdCSPERqbKg6hBVD3Sp3vz/Sr
MU3QlOqrjqOpPFriU6hnJB4soozO4o6oy5reGSA7CqOohyhrKB5Dk4Tqv3gUoVgYt2+VOt+fNa/G
tHsa7eATqqny2aAnSFlRPHFoPe8uDSrMaBRFndE8b6iW0Po4nnw+67b5hc/EqzGJUFw1fOdH7zo+
FeHT1kmCZxa/iSP990MlMA0z5m83p5fT7BgKx9BR5bo7mLgQqgLVfXbY0H1WF1S7GlNLxNSl0f44
OoNPtZ4IbykCJ7rpH5+UFAujMaKkocUY2kUo/d1NatyuSp1JbOuCSldjmj9g74yfidG7ks8pegLG
0QyudvNaUpIiYdRHVGWoEUNlhEYVnbfNF2aLJJdFy4Ieb2P6OTfwmUbMSWC2x89kHq3zaZJVxJOj
cD84L+V1ijCkgKIuonajbSgaQ4deaobt5OTRnW+bz47pX2W0nN1N/Zw6ml/Ap1JPKZ43kPNUvs8Y
dDQYrEc9zCBqjtkLc0dY5tRPHs0Zt/dPENEdB8vZbeTnrDTaEEcxPqvhs0VPHMT70Xkof08fYjSO
ovaAPWMoOJIf10kInRdCt7ptnu14Xc5uWz8ZEpfHTy2fZPh0XFPhKaFT5C88IPfOAtlJFEW9dsdQ
eQydc+WzFELzoG4m6GU5u3v6qYyfIYZ78KnXE/OspF5LZD3uNMkpyiiAKGsoF0NVhMrvYPqUmz65
jufl7G7ip3D4rh+9S/lU6enTBcGW1G/yOP/9cDSmGKPBeN4xljN0WDuR0OodTLJh/MaCnpezOxS9
n6KIqUujLKdxBwRUVFSOz6SeCHAJBCe7OSw/58BJGgD528lFlDYUjaGjPaz6+js1blelzuPEufdM
L+jj1OQtZ7fST5Wm6+Nnns899GQh3AHOS3mdFAEpoqgzXk8YWouha77+3jd5JAmoekHPTc5ydgoI
JwzYC2m0yimipXQ8T+tZw5OycEs4z4WFNFbUDaJ2I2lomlD9OL5x8qhhUJ9MpHiTvZzdrn7qhu8k
pwlPp/CZ0lOI5y3kPJXvc8Yc9QfrUQcziJqGKgmd8PV33eRR/4VQvaDmcnb/nJ/60XyaT0X4dFiL
xINFlNMJ7ZAYhmPHQ3YYRlEPUcdQOIaOKnf9+jsDKhFJtxTUWs7uHn7qNGU5jTtkQVWEz7yeoIl1
OvN7GG5ZURVmNIqiJpR2UzGGDjbPEcqO46lx+9rU2SuosZzdQj8JFHeOn0o+VXoq8CzQ2TnWP+w7
pSnIaICo08wZasRQpC5zH/2uk0fOhnsIOl7ObqqfMwKnNn5uzGdWTwS3FICdagLHZC0Nh+qvTj6i
tKFoDL3r19+JkbpzW1L3BFFC0PFydociZ3G34TvJacJTjE987K7VEzCOZnCFm6Pycx6MpIiiPqK0
oVYMHXH5v8mj4TPY06Sgj2G/0WpMDnf/gJ/60XyeT4meRTw5CneB81JeJwZDCijqImo3MoaiI/n/
TR6dn8kFHfcbrMbkcYf2m+ynTlOW00xFA58pPUPsGA23lfNUvs8TdDRWNEKUNBSOoTlCo4pPmjxK
htVDiXd4XY0plyQ38nOv+JnlUxE+K3rCIN5FzmNhHPVH6w/HSa9tyS1MiXG8LoTeY8Kd3OFlNaZd
/OwJnNr4uQWfCT0D81ASdXSm9gQPxsMDA3uKoqiHrGVoMYY2Ebrj5NHU6SJuh5d/6aH2c3I0FabR
qDnhaYFPlZ4SPIt0auS97CUtKspoEEWdZs5QI4a2ERqRWgihLcN4fLooNa9ETSu5y9ndz09GSHH8
TPGJUknxmdUTci2L34SR/vshEphGIfO3l48obSgaQ2U30qsnj5jU2fnd4WsAACAASURBVDCMl88r
Mf1Oy9lN9LNDzGlpFOBSlkeZyrSegG8ZAiewGR2YoxQKoz6itKFWDB0RumryyB2oM0i2XOwU3MCU
7Xdczu6j/KyAWR3NC/mU6FnEk3VwmZuD8nMuhKRAGHURtRsZQ/Mj+czkkZ8yS7cs7TN5pBe0vhpT
s5+iwNkaP/fgM6VnSB1l4U5wXsrr5FBIY0UjRElD4RjaRGglhFJ3MDlduyeP5IKaqzEdy0Q/txu+
r+NTET7RFzXVIdFzffk+V8xRf7QedHAMLcXQTebfmRAqiaTyoTos6KEcmqzVmFAyN/VTp2lDHNXz
qdcTFvFOdB7K3xNHGA2jqAml3VSMoV3z71QoXX3f/ERB7Y2M1Zg+ys+Z8RPQMs+nSk8Nngo6BftA
R+TeCQD7CKKo08wZasTQJKGRqZ0hdO13jWYJerkP9LsH9gTdKEdwFlpdGmU5zVTAVDID+rSekGgF
9vSB9bTHlKcgozGiIkNBQhOZk59/p0JodhifvdhpbwYLap8xtBGwnF3dRUXiXDF814/es8N5Lnya
StXxTAE4c5j/dizW0nCo/urkfADNVttQMIaO6xLDdnIcv+K+ecXkEYprMZAOl7Pbws8Jw3dt/JzN
p1TP2DhewZluusdnJEXCaIgoZWgxhtYJbQyhmmF8732etY1Gy9l9rJ+V+HkPPlN6htCREq6G81Je
J4RDGodRF1He0K0JFYZQiac7CTpYzu5efhIRk0mjVT9lfDbrqcRzOzjPhYTUD5pBB9LQYS02as8R
So7jfWBdUOGAektBr8vZLfIzKWbT8L0/fub5lOkZgQeDuL2cp/J9voijYRR1ENUYmiQ0qpj35U1v
uig7VK9PHqk2uixn58U7rJ/az+2G7y18olRSfOajJ2iilE54Z/hQHDgesLMoippS2ltat9KDhEom
j4S3LG106VMg6KEEG+lXY7qDn63xU8QnPnan9VTgWaSztPlo4zSqIKMBonwQtWJodiTfPv+u+/Jm
0tNpgjJ7+ILfyrv7OWn4vpDPCXq22tk60n/feQLTcKgOdHKDKGxofiR/my9vNl/6VAtql+d/5xvp
y0qqkWyIphVNWU5349MzDPAtQWCrmvExKUuhMOpGUc9QfCi/cv69EkKTkVR/lxJ4iVRhK7qc3TQ/
Jw/me+OnjE+FnjU8WQhXwDkor9MgIAXCqIeo2VaNoXPm39d/edPjr3PyKPcEXM7uU/38OD5b9GQw
3ATOc2EhdXPmqwcdRE1DsRiqIbQ2//6vXPpEn5jL2d3JzznDd/3oHQIVrkvpGXmHe7ipnKfyfZaQ
o2EUDYIoYagRQwdexmBer+DRtzAVQqjDa/JC6N6CWsvZbeAnzKIocM6On9k8ylQ69SF5qIj3kPNY
cEcjRR1EWUOzI/nV8++SSJoc0y8X1FjObjdMNWLOi5+NfFLhM6snhqKCzuI+0CG5d/B4H8GA3h7N
24aWYmidUGUI3eauz2mTR29PSqsx7e4nEThvzSerpwDPvHvawHraW8rTcKj+08vuZLcahjIxdAWh
ukuft7pniX5SWY3pYwfzNU4TnoJ89usJ6JYCcNYw/+04pKVQGA0RrRuKjdpzhEakqkLo1K9rLhZ0
tKDy1phqxCSyaTV+pvgshs+UnjFyNIOz3HSPzUgKhFEXUd5QLIYONhfMvwsvff5jA/ffMlrO7r38
C34q4+dUPnV6htJRFK5081poSWNFPURJQ40YitR13MKUTp1ZQe80cB8dM1rOzmz4mMG8Mn7yo3mM
Tzx8Wi9eAU+Cw73kPJfvs8McDRV1EDWbLEOzI3mEUHLcrpp/z96ztNvAPToMs5wd1uvWYXR2/Ezz
SYXPvJ6oiHvLeSyEo+5w/WGB6DZ1z7+HYgZkTgmhmw/cmdMhlrN70r1u5+et+aT19NUDTRTSCe8K
HYsDR4t3FURRP4iOWpgYmiF0n/n3uw7cmU3w5ezuE0bxjoVGltMcn4v0hCir0VnZerBt1lSQUT+K
2kGUMXQ8aldc+YwJ9UV1Qyg+jBcM3DeJnW9PTsvZ/S+M5p4K4qieT+xPHtVI9FFtldg3rWmQMn87
mX3sRtPQdAyV3MLEiOqGUDySCgbum8TOtyf11Ziq208Mo3k/N+GzW8+YOB7BTjbDQzKUImE0QpQx
lIihAkKL43gihAo83T12vj2Rrsa0uZ8yMIucKvnU6RlCR0q4AM5reZ0EDmkcRj1ENYYuIpQJoYqB
+31j51sZ3Uj/txv/pNHPHItL4ue+fNqkKfHcAs5zISF1g2bQwTEUHcpPIzQfQtsH7o2xsyroezGX
s7unnxMG89X4CWDZoWc+esIgbinnqXyfI+JoGEVNKU1e8Rg6qLtWZe4CbQuh6oF7I5pVQQ8N1nJ2
7wUFi99kxzBa0XQ1n7SeGjzvQOeh/D1hgNEgivJB1DI0F0NjQrW3MOED961j56EUNwGWs/uXw6g2
jWYqYFHFemIoluks7wAclNvHDncQRFE3iMKGjmNoitDiOL4jhH5a7Hx7Ei9nt7GfksQp0zRqXsEn
NkSgGok+2g2R3SU4xRh1o6jdaBqKxdAUofGlUF0ITXq6JHb2CBovZ2c23NTPruE7PXoH+ETH7kI9
Ad8SBM4a5L8dh7M0iJk/fTxEGUONGDrwMnPTZ3AptBRC8WE8KOgsNDOCxqc5Wo2pKOMSP9vD6B58
CsKnY1nMHAnhLDfdY+OSAop6iDqGojEUG8kv/famZP59SexMCBr3GtzGVJUR63VvP8nReyOfKj1D
6xgMV8J5Ka+TASGNFXUQtQytxtAGQn1RiRCaGrgvQfNQqoJ+l+tydjsN5lEX9ZhW0mjU3M2n8aLl
oyfu4VZynsr3uUGOhoqaadPk1TJ0HqGMqB3z77nY+YA4mzxw/318Wc5u8WC+7mJDGKU0pZ9DfPbp
qcFzZzmPBXfUG677zQavRuLMXflECC2N44lGdew0pa1yqu91Wc7uvWzrpwBTlaZVTmfwmdQTQ1FD
J70XcEAeHDDcSxBF3SA6NjQdQ/f69iYsKBo7E/F0gaCPc4O3nN09/MwlzjWDeRmfCj3LeBborKt7
2UNKVIxRN4rajdagXTd5VCb05jfOzxf00uAsZ+eAg/SaRKZeTF38DLkU8inUE9AtA6AmqkK7JzEN
YuZPHw9RgaEiQiNSJ4TQafPviSG95tLnzxNnOTuzYW1KnRpGW+NnKo4S4TOjZ6gczWCzm/4xCUmB
MOohShsKxdBr1ajGD53RhLsqhIKxs3GWXZ0uh+XUC1vO7oZ+NoRRv7HK6aTwOQvPFW5eCy2pGzSD
DmaTceGzbQJeeQvTrW777BLUodVajanKpNlwXz+p+LmYT7meuId7yHku32cFOfqMeppp02xiYugE
Qiu3MMGeToqdneNzoMFaD3RGzJzlpwRTStOoOfYU5FOjp28eKuKech4L7migqB9EYUNHlUlCI1Kp
cTw+cF8fO6shkt/8vRjL2WFp0mzo8jPl4v7xE+ETDZ+sngo8pXS6O0NH4tAx4p35A3q7lTN04GVi
9kj6BfiO2SNM2rY7PRPh1Gp4fzxezk6o4Rw/5w7fu0fv6eG8oU9OT4TFEp2JjcebJFnFGA0RJQ3N
xtBBjXQcrxm4p5ys5sauK5xIw3A5u3387Byxi8AMfJzIp1DP2LYcndKsOt4rqynCqIsoaSgeQ+Nh
O30p1Bc1O3AHY2eKQ+F9Si0Nw+Xs3su9/WwPo8U0muMTD5/Wy1rCk1awh83wYAylz3ADD1GzzTIU
iqENhE6fPRLf9rlU0MeoU7Sc3WxYG/2UYEppGjWnPMXDZ0LPiDqKwqluesdHJQ0VDRDFDQVj6LVb
glBqHJ8NoX1ozhf0gXR6PQmWs4Ns+4f8lMZPFZ9jqAy+bNUC7wgOV8t5Lt/ngzkaKeogahsKDuWR
kTxQwY3jJSG0PFbfSFCKWX85u9nBdJafWTELms7lk9VThOduch4L4agXNd1mw9BxNXTlMxM6F8we
3fFe+QfSKWDWX87uYTQsDaaZTRow9RtZThE+0bG7VE/MxL3lPBbU0SCKWnGTMjR5D9PNZo+c+5QS
c0TQJvqoaXQ6L2cnpBHqtCCYdoTRYhpN8kmET+uVKeNZpbO4PTYstw8cbe9GUbPRNHRE6JQJ+FvM
HrVNuVunLGD2vJzd4VDGY6yTLphq/ZRgSmkaNQv51OkJwJa0T5pWjzvjOQ1i5k8fD1HCUDyGCgil
xvHZENo3jBcKKmT23Alczm5yp939lMbPFJ+tesbE0QhK1USOwlgKKOohWjd0UJcilBvHS0Jo4+zR
bEFTnY6z8Dv6qSUzJ2Yhfq7lk9czlI6icI6b7pFRSWNFHURZQ5EY2r6GCBNCHSYbb1qafLmT7/Q4
rgdquvUAOmECQp2KfqYSpyh+Bj7yfA5+e1iV+YvPR0+cw3VwXsrrVCBIQ0UtKW1eh1uMY+gVzIWz
Ry6T9dkjYSBtutyJ7Om4HmjNTGQDYTAtp1SNn1T8VPBZDJ/Z6ImKuJGcp/J9ZoCjgaJ8EDXuA02N
5D9l9qhrwkjHLLaBsRoTJJ2OxgV+SjClNI2ak3wq9FTguS+dh/L3NGNGHSbdVmvQPnMCnhrHewP3
abNH21/uNDcw1gOVZc4mP8tk9sfPKG7ycRTlU6gnpGKdztQeoDG5e8BoD34UNeImaaiG0GAcnx24
z7v2ufRy53thN4iXsytxeHc/03ySabSbT0uoIp5ZOiVp9bwTHlSIUS+Kmm2WoV2EcpdC3UwKx07t
hFFiHN4fL4HH4XJ2pcy51M8Uki1htIfPTj1j4XgDJWpi+6cs9XPmTxcHUdzQUeWgbvEEvCB2FmeP
Vgr6XuINRsvZ6cxkN14QTCVhVJtGEU/RPGq+IAU9OQm73XSPCUsaK2pB6TQZk0eLJuDxTJqMncrZ
I6Gg70Wv6Wg5u8NGhce6Dfr8TIqp07SXT1rPgDtCwxVwXsrrJDBII0WdIGoYOq6Ghu2xmMXUCYfQ
JbNHOkFLG4SaEsvZrfMT86/sZ1ZMRlP6+QCiLj198lAQt4DzXAhIA0VtRBlDB5XDqpBQ/7lo4N46
e0Qn1XWCjjTFl7ODdHsAnXR+asncIX7q+JTqiaG4JZ3H8vcUY0adrPkwqWQNhUby7LidGccTs0dS
NItD+pmXOMPH7nJ27WbO8DOFZE/8XM2n9bqV8VTQSe0DG5L7h4r24SJqNpqGLiK0J4SauE6ZPeod
lHOPveXs2s1s8lOcONNgzuCzVU/AtDSdNXMvWydERRh9el2sIDquH9UO6voJzYbQaiJdeatnn6an
5eygt7XKzF39nBI/eT6x8EnpWcKTJ1ARVIFdU5i6RP52MXpYTYyhVzB7J+A3uXN+P0FNTd/LeQPj
m0iPR4+TpSC73s+t+ITDp15PTsJGN/3jwZLGilpp026yDE3F0M4J+EV3zgsFtc5xhqzH9UBnPp4Q
UjOwzgijUXOST42eAXeEhrPhNE8AgzRS1A+isKFoDKUJLYzjc7GzeO1z82l28DG0nN0WfhZlvFH8
1PHJ6umTh4K4HM5zISANFLUR5QzVECobx/de+6R7QbRuIqi1nF2LmQ+gk87PDJkT4udqPnN6Yihu
R+ex/D29mFEnaz5MKh1Duwjd7OubdNTsQfBQ2gU1lrOTOfle2sPrND8JMOV8tujpvX70a1sowG6w
8Xh4jGg3bhQ1hR0bOqod1F2r1k3AO55WOW0XNDUZlH3sTCJlS3uQpTtlYNWE0WIazfIp0xMALU9n
bsvBVhlTIUa9KGoFUcbQuGrVBPztrn3KZCVLfjm7VY/n+Dkjfir4hMOnoVUFzwSAoqDq7ZX6kACM
OohaTZahWAwtEtoSQidd+5wpqOgxtZzdDo9rnepPZGE0ak7yqdEzgo6EsMfN4Fi4pM+ou48obCgW
Q3sn4DUhFLORvvZ5Q0Gj5ex2frzez0LenMenWk9cw5luOkfHJHWQfLVLDO0gVDcB73ha5RTCsTL/
vuRx42pM+2XRDKyaMEqm0ZSnTPg0afPNQ0VcK+e5fJ8N4GgQRW1jTUOhGHqtqt7DlJ6A//hrn+pr
qNF6oG9bb/ZYGFLb4+cqPjk93TcBZuJech4L6qivqIno2NB0DN1jAn7Od963FtQory74cnbWjhY9
XuBnU/zs4lOnJ8Kijk5nT9hgHNl9tCc7bD4sKxlD7zoB3zVy30FQowSbKpez287SaX4u5hMOnwk9
YxjzdNJbjjfIsIow6iHKGjrwcvoE/P+ufQ7OqLqbzHJ2m1nKd8rAOiWMxpxifDJ6VvBM2KlLqsNd
cpg+w00cRK2moaFYDB2IWRu4/+/a5/Bgwl02rcYk2k2Pn+viZ+Bjgk80fNJ6RtBxEDawGR0IpjRU
1EeUMBSIoTGq5D1MuRD6gdc+RYc6F2w90LtbqvWzKX6GOKbDJ6tnwB2h4TQ47UNjkEaK2ogShkIx
dICqj6wv6t7XPrtH7sg51HaDLWcHdAEe75dFwV5JTCuatvOZ0xMFcSGc50JAGihqUOkYCsZQNnQG
hIpCKDiM33rk3o8vvZwd2X1iFhWG1Ib4GXjJPgdBJfUU4LkRncfy98RiRu2s6TWODQVjaIZQf+Du
KAmHUBDXDUfuhd3Tm1aWs1uzqY5JsZ+FvEnziYVPnZ4Ai0o5h/vCxuLYnoN9RYiWDb2CWbzt8yJq
LnbeeOSOHLdhU2MSiRSrgN0eWRTspQmjDXzC4RP4K8a0oT0UWxp9U64+4y09RK02y9BUDC3eOd88
Ab/dyH3ipm/FWg/0Ma7WB8oOP+dk0XT8nMKnSM8IuASdyqR62R+l6TPcJEAUNhSNoVpCcyG0b+Te
PGPUnDuN7vFydka1CESy+z5+ZuPnMj5pPQPpOAjVbIaHgSmNwqiDKGfodEInTsAXh/RLRu6avTPL
2d0vi/KdnB9MgSn3FOCzSU/fO0LDSXDaB8YgDRS1ESUMHdRdqzq/v6mYgL/9yJ07m7jL6Brokiza
4eecLCqLn5P5tGyT4LkMznMhIHWyptdqGpqLoeLvb6ZCqI3r7UfuImR/ymA9UFHQBLpoouuMLNqA
aQefvXpiKG5D57H8Pa2QUT+KGlYa9XAM7SRUEkK3y53vRU0i57C/nJ0mOd4yiy72U8QnpWcRT6Wc
g31hY3Fsv8G+vChqtTGGCghlxvFwCK1yeuvcmXTYX87OqG7Nonv4mRLzFnzyesYypu0kNrS6ZmD1
c+ZPFwdRxtAOQmUhFBvG8yP3ltzZOBTPdkGXs9upy6ZZ1GuiNKWfN+oZCZegU5lUT7ujMH2GmziI
MoYOKq9Vl5rSl4/8yaTqMN6Ol825Ux8qy13Ok0itQfOj/cTj5yo+xy9WGk8OQjGb0UFgSqMwaiNq
tBiGJmJo2z1MK5YN2UpQ4ITRLuf1QN+3Gz8uKBhviXTZ0lIcU+5pik+Bnr53uIZT3PSOC0kaKOoi
Cho6jKFlQr2n8pH7DrnzveS7CO21l7NbHTRv5acqftJ8VsJnTk+QxFVynsv3eQCO2kx+t3KGIjH0
uu0O39/81Nwpiabnans5O6N6I2L7LW3GtIHPsp4efBCKu8h5LKCjbhQ1hR0amo2hSkLFdy2ty52r
eIy3PFwDJUWMt1ziJxQt27KoLIyK+FTpCbioo3O4J2gwDu042JMXRa0gShjaTWgqhCon4M3Hj1iq
VkFJHo3qY5cv410vEbE1ola4nZRFK/Gzj0/uT2PQBHZQbGj0TbgKMOogajUZhrYQ6j1df+v8QUpj
g4Km8oBZOY6xHqgmixrVkoi60E+HRVX85PmshU8bsog43k5dUL3sjsL0GW3hIzo2FIqh16pV39+0
EynGqSicarprAqZRbR0nvZzd4oha8ROTMRFMm8Kojk9Sz4A6SkIxm9FBUEojRW1Ex4amY+i8729i
TXO/9A6pnN1LK8PhcnYr/JR3EVqqwJTSNMVnXU8fPJzDKXDah4UgDRQ1EcUNHcZQMaEeqNVhfPst
TCuufUqqhyvSA2Gws3pnP6fHz5BTjE+hnhiJi+A8FxxSO2t+t5YNBQjVXfvE0azNGFXUFAlqnMyc
6tF6oPtk0Yl+SrMojmmVz0L45P7ChW1cp9nl70lFjLpR1BLWMhSIoaOa/MD9zGQ5hE69dX7PgBlW
D5azey9x9f/8DJ7owmiST5GegIsiOs3dQOPxeM/BbrwoagTRYXU6hlYIzYVQjNOG3LmpoI9hj2H1
YDk7DrZxD6P6Fn5WLc1i2sKnRs9Qxiyd3HbD3ryqAKMOokVDmwmVf3+zOXdOE/Qx7GFUE4e5XgPt
ZFCxv5l+zoyfgZcxn2D4HL8eeTxZO0Uxdbw/QtNn1N9G1GgxDL2CyU8f+aJ2htCZXzjSCPoIeyjp
vawHOonB9P4aiO3zUxY/M3wK9AywYyxUuxkcBZQ0UtRFFDQUiaFRhS/qxO9vAuHUfCwXdHySc+m9
rAf6vpPhw7WsNkdUqaU4piv5zOkJezgHTvOwCKSBomMqzQZ0GZEaoZLpo8wwvhBOC10ew+oFKfWy
4Xk5O7WO6Q3T1RU/IUv18TPwMnqO8Unp6bGHkbgIznOBIXUVNYPo0NBxDE0Q6g/c10wfNd8uP+na
p27D0zVQzr64x7i608+KmTyZDfGT5VOuZxXPTeg8lr8nFTFqQum0oYZeqy417Coi8hBqCiq6EAqM
6NXVEirHPR6Px3k9UEmkVPTY18/m+DmNT17PGEYBneEukDF5sHd/FwGihKGJGMo9l4fQxPc35Xm0
M2wqepyqv4BPkiJSro2lE7KoBNPgacxnl56Razk6M1sNtmFNjRl1ECUMBWMoSSgeO8sj9zW3LTWG
zYbAaq0HOj90xj028zMl5gZ8snoGzLEKCmKqvUfC0mfQ30aUMjSuYgfuzdNHzbnzTmET6fFl8PMY
VlM9tomlbPe+LFoIoxk+4fCZxJOwUM9mcBiM0kBRE1GjAfr+ppzQ8sg9kTvztyptGTbfCtljuJiI
Bjzx7iR+9kRORfycwielp2seCuIkOO0DA5D6inqIXuuxGKoltHX6iKRVc+PndB/zuxuvBzqHRMHu
mv1MkCmJnyyfc/WEUFwm56l8n0foqOnkd2PJ0GvVpaY2A18OoS3f35wl6FuZzu1wPdC0clRnwe40
rNYs1WNaTqMon/HvmmrDu8wvf08qYNRD1GozDE3E0A+cPtLctjQ+yTk+hp1Hy9kdtooeNnaeFEun
ZFEc0zKfXXrGMFbpBLcHRuXuAdztn04PI4iOqsEYWhi4E2juMX2043C93nl0DVTrIEXiHfzsjZ9L
+TQFi2hL0Zn19rIdKWrMqB1FTUNzMfSG00e7C5ru/FaIzoP1QMVoMttxnSV+6iKnIn7q+WzXk2Sw
mlKDfeKWelHzu50xFI6hSkJXTB/p1wrZJGHmtruuBzobTXFCbfAzQWYOU19TEZ/D1ymHJ4Fhh5vu
cTBJfUXNIDpuGBsqJ9QDNRFCZdNHkwSdkjDx7S7L2R36Rw+NsjChaljlLbV7qeInzWlZTwWes+A0
DwxAajrpNg6D6DBz1mfg4XE8HEI7hvELpoyYzsZ2xeNdroG2xcspCXWVn/UsuorPhJ4QisvkPJXv
84g+PG4UHVpp1XfMwGfH8ban7dNH8y94vhVmuyLe5/VAt0NzVz8zZOJ+Vvms6VnDcxc6D+XvSQWM
OlHUahoZCsbQEqHoM+xJx/TRdEHXYHpeD3Rc1qG5wE86cn4Wn/a7IXyfVOgktwVG5uZB3G19RMeG
5mJo3/QReNsSpObiKaMkf32YnvdmrwealbK+tyzB82Jpaxb1GzN8CvQMXuwEnbWgetqa8jRk1EZ0
bCgcQ4uE4qAmQihJq+aC5wz+BNc+nb2Z64FOljIbOtMJteJn1dJ8GBXxOXxFk3hSENbUhPaLWvr0
O5uIjhvGhooJTd4GCubOyvQRhWz6KmddUL2rh/VA10mZDZ1pPytmdsZPN4zynJb1dN8SMIddbrrH
QiT1FfUQhQy9Vl1q1n6Bc813NtOCvpUuTFlXjdWYZktZP/JmfqJibsFnRk/MxJlyGseOHTWd/G5k
DE3E0Plf4ISG8fo8Ko2VRpnuqrEeqNbEcdEeWe0nzaQ8flb5rOnpvKrIC75SzmPBHPWiqAXsyFAw
hpYIBUfu1dzZOX3UNjCniuLI4XJ23BmteijxUxY/7V5ZTBV8SvSkRhA7lb+n5X/SnChqBFHYUCWh
yRCKcDpt+mjGpc0p2lpD+N8ed3i4l5+p+OmCOZVPU8CIxjSdyQ0Tn4SYURtR01BkKL/BFzhbhvH3
FlSgbbQe6L4P38tqP0Eyk/GT5bOgZxZPmkBFTj3sg9H0GWxgIjpuwGLopUY3A790+kgh6Pgcb/Fw
tB7oLR42JtTplvpgUk9BPik9fewIChVqAvvGLA0U9RBFDY1i6Hkr0Qx89d55UtCb3KvU9DAcwreU
GaFT4ifNpDqLlvns1BMFsRNO53AApL6iQyut+kHlKIb6FaoZeCyEGrRqpo/Sgo7Ptu3aZrHA64Fq
42OutOVWVSzNWKoLo3k+4z9SVBvXqa18Hz38YJlh02kzDI1jaJFQcBzfc+88ebdnGE27JJwZQd31
QD/uYbOf6vip51OiJ8DiWjmPBXLUi6JGEB1VD2OoktCN7p3PVn/Ww8t6oJ/8cKKfKTErfCbD51i6
Ap4iOi+7qceSeDd2FDVaxoaGI/lBhWbkPvfi5/8EfXRcA91BSgpKwECaSXn8rPNZ1zOyMWUnupHR
j3XVS5o/HUxEMUMzMbT73vmOi5/i6aO5D1UFWw+UYmpU7uenLHLei0/rhQxeYM5OUUo97wr+dESK
mohahkIxtEKoYga+EEjnfNV9qpWqI5zWA23Da1Q+1c9M/GTADDhFPBXqiWsodNPfPyRpoOjYSqMe
iqExod7TO138XCfosLQeNz+EV6r6b/jZEj/DNIrFUZM3Tz1QxG44zQPGkLqKWkEUN/QiZuHaJzyO
b184ZDtBlQdjC7keaFOoVO4r6yfgoZDMJKY0n2D4pPWEUJwuhWOhkwAAIABJREFU5/j40afDU9QI
ooahfAxtn4GHhvHyi59tgg7Lyn1Z64FuECqV+1oSRVPxs5lPXM8KnqvlPBbIUStumi0jQ7EYKiOU
D6HTLn4KbgJtj5gS2eMh/AahsryDJX7K42cLn6SexCucKNDW2eHWM9zaRRQ2VE0oOHL/vIuf5X0N
i3hoH68HOj6L3MMNdqD2E4qcC/hs0DN4U/B25rS9bEWJ+gy2MBGFDb1WXWqWzsBbw/hNBN1pB8C+
wvVAm1TNbfXMdOX8JM2EmJRn0T4+c3gyEtYyarBH0NJAUQvRcX3qLiYdoVgIBWjd5OLnVDaHhTqD
aAjfjuLUKKroTD8GLfWafE1jPhv1RD3Uu+keBZDUV3QcOMf1YAzlCPVABUNoYRifv/iZ7ZzaKudu
9QzfS7Qe6LAoeSO61o+1wk95/BTwSejpvBcwE+fIaRw1dNRT1AmimKElQj1Qd774yY3zU/vN7SDV
NdwqtR7o8q4TKC2wWrXUB9N/GnOKVjnVbgvTpb1gjlpSPsZYGtXQl+CD57lxfPHiJxU2Ad7CcT6z
syVsEucyGMLfn9I9o6gii5KaVsJnAc8d6DyUvyfkMmojarQML30C1z6Ju5Z8QukQitBq6Se9+Hl/
Nn/LYD3QYVnjY1MUXe9nMn528MnpGbxPsnQmtgtH58ZBnO1cRK8NaAz1R/Ibf/1IPHTP7YxwlzhA
qutoK3Q90Ki9x0fiqF1RVOWnIH5W+azq6SvHGliNqYftCU2ffn8TUdTQa1WJUPHXjzoFjVJqe/Bc
IexlCD+TUnxXy/wUUZqKnxU+kfDJ6Olyh1tYVRPYL2Spr6iFKG7oRUzu3nkYTXoGnvwC5w5D97J1
+Akmul4WVB6Wbv+aomjYPsvPTPyU8gmGT15PUMQuOJ1DxZC6ig6xNA3lY2ia0AkhdIuhO77VRIGv
XbH1QFe3bxBFVX7mxGQ0RfjE9SziOVHO8ZEjR620aTeNDMViKEWo/aw6A3+PoXt78Ky2/314GsKv
pnRbPwEPISYF8bPMp0LPGMZ1dB7K39PwGfURTRtaI7Tv60fTv3LUI+hKNn/LaUHlYZlIZfWgZXV7
o6g8i4Z8QuGT1JN4v2TLYBfxkDzcn7cLG1HG0IuY3I2g6js/8/ctCYJnUtDoFIL2blbPXZH1QIvt
q6NoLrWSPWqWZv2k+UT1TOKZoRPdZtiPUzVi1ER03DAwNI6h3Dc47Wc9Fz9jFJlomhK0JXj2pdHD
EL5K6Z5RlOgq8XNa/Ozi0yLNpY6yU5BRrztCMX26nT1ER4YiMZQhtDGE5tde4qJpfjycb5/I6rHr
1/jNnEt18zbaIIpWYqkiiwZPET4JPT3yYA5lbvp7RyR1FbUQHRk6jKEsof/ZrdWvH4mG7v9Q8OSs
N9YDHZZqQAw2avG1zU/WzKqlHJ/T9IRM7IXTPFwIqZk2H2Msjepr3aXmXKG5iUk2Aw98fZ0JnkJB
gxMgNgr2FG1kbU+sB6oDbl5+rfupiaKJBuKZhs8xczZ+AIuT5Rwf3f84OFHU8HVsKBtDRTcxmSE0
P4yvB890nEO3z2zUlEaH64HmrCpWptDVtbf6KY6fVT7reoYyrqXzUP6eisuoHUXHQXRQO4qhBULR
cbwZQqFhfLa6fWiuwxCvzLUP1wN9jCo7AOzOp0o/RWZm4meFz3z4tAwMbMzTCW8Zjs3NnTtbmoha
hsYx9LJlyzc4oRDKDd3LwXPJxc3mNDpuHyXQeakzc8xb+MmTmcuiNJ+gnjk8STvT1J43xEF9+t0t
RIf1qRja8A1O1Qy8NHhumTHxSnyj0YLKb5sElb2pc14+XRFFQUuJZxk+CT1d73AM8wkV2CVEqa+o
gyhmaI1Q+1n7zfPS4LljxuygerAeaAqrtZVFX1f4KYifJJ9deoIiNsBpHySG1FV0hKVRPQqd5L3z
qYuftJqzg+f4VLfJmHilf8rXIfxdUmcqas6IokiXjKUT+BwjV8NzCpzWQQNIrbRpN40NjWLoum9w
qr/3vmTovnMavS6o/NZ9fuUH+NkVPxk+L7/luILWM4ZxCZ2jU3AZdaLoOIgOakcx9EymaP6oEkLz
33vfXNDHoHlS5Z+/z94aBp3nWdiw9wl+Pgt+PrEnfhh1nz6e54pLj3HVaMufelfH5zPqMbXEp2O2
j+uR399lS/9Vcp6BbxHysfGmVT5Mte9nzbjy++F5CK+LgPCpNP/0E/yMDmw/BnMp8ezy+7j8fga/
MPwXa1ZDrbptHo/HrKVEnl0LiUi+BI8M3ecGT911zt40qhnZnxdUfjuSqjJjoc7xlJ+UjgU/bTKT
mGb4HL0UlmmedZSDaTStnaCYPt3OQywNW4eGthFaGbrn54x+d/7+sCho79B98nD/tB7oLkBmtun2
M01p0VIcUxGfiegJeihhM9o1QKkVNr22ka38NzgpQhMhFBA0njOKeiwR9OE3LwD2+d/jPIRPcTTc
PLHNAlTLXQvVqfjpghnxWdDTkQ9CsVFO61iRo14UNRAdZs7yXUw2qIkQOud7792Cjs61uM2oOXWc
0+bHBZXfdpioLArYsMvop8ihqTEzYSnxDOBToGfs4kw5h0f2HXWi6ChxwoYyhHqg6hZf0t48Hw7o
x+ewEMuukf2fQ8WgU1HAzDYNqArz6To/n/Cz+LlkIt7VcZOZeGwG3vwZh7VxFfdyuM+gJ+TjuJp4
SHygMpvrm2XbPB7HBZVTv57ENq3NusoVlEqyqCx8mu74LqbVBDeMBufmnp0Nn8w/8xh0vlSdK67P
7RSaWAGUHMb3Lxciq2xtfivJs/wavmkbCJ/V/Dl+Okaq+WT0dJUj7cxRe9oK9/Tpdh9a+d2AGcqN
5BcsvhRWrxZ0dH4rm+PK8YLKcOWk5gWhVEyp1SWTRZkwCvBJ6OmBB2OYDqjx/hBLXUUtRDFDaULt
Z9XFlwwqZ35rszduPtyODc1GZbCgcgROqRlnsXYWG/hZi586PqHwORbOcQ8jUQ2nc4gQUk9RA9Gx
oRcxC/NH1ZvnASqlbC6Nm7OojbYZLajcGkXvEUqZrvkomomfUj4FegIsTpBzfMTAUStuPsZaDmvj
GFoglA+h6eC54o75SQY2BM+35tJ6oHo1NwmlyXxaiKIZS2fxaQIYyThfzuHxPUdtRC1DkRgqIrRn
8SUCVgLTW8TNBksHQ3iZUmjHSamz3U/STN5SD1PuKayn9XLCL/MG5e/J2Iw+reahrkgMPVdcCHVa
7UuhbAgV3/pZE3RSGh129DfJNP+WwYLKbxsMHtWaF6bXYOtt/FTEz0T4lOnJ25nW1v+wjI7iKjps
HNUPDfVj6GkT+Ob50tDdQE95nVN2XVGfIhsuiA6ar+uBdqo5LHN4xc2t+1mgFLS0xGdJT+/FJCSU
RNT3nWCYuooOA+cDNXQQQ73n0xdfqs/A4+01YDvjpszS18PLEL5VTXkozQA508+m+NnO59g3Rz0Q
RImb/p5jST1FDUTHhkYx9B7zRwsEhZs746ZmEP8X0NuqCZ8OvPUMP4vxU8qnQE9AxT44zUMFkFpx
8zHWclg7iqEiQtvnj4SCjo6lH7Bvaqm9oHIGVb9jaRN9PE1Vhu2iKGo3eJhyT8Eaq9JtIHo0lb8H
dhm1o+iY16GhF0J3nj8a9hDOtS8MmejG8CZY85/Ho6pmI3ydx8tVhr5q/DT/V4P3Xz8ui1J4rYMO
oz7jbq96V8ctVhNR/zeP0a/s+nv1Onivir2OSOmfd4x3k3qDpyr95jtYYTd/oR2pMxuWKb+J4LXU
vSmYh7Io6mVR99ngt3r9NY9+8cZr6r/USTXhzYLRubVne7On0fps+RZ8ff26OfNHDXETjpalXDpz
cslcUHl45ErHvcj9AD8rfLbpSdmZhPa8Herp0+08wtKovtZdahrmj5A5I+sqpfCSZ1HQ0Tk1cqga
xI86Ph4PZEFlfUiu7EZ1NhP9LFA6i09cT+cFRV/rLJvADgFKPUWNIIoaKiK0GELLwXPjS56wcvyu
4U1OHQ8JVBQNE5tMUXO5n2z8XMdn8HvGW9hOtfI6RPTpchQdIzo2dAGhQPBsv3FJJajc0hXTTMaC
yo9B5WQrgyInFzc39DUfRetZlNS0rmf8ik2Qc3zE4CNh9hhxOaq8VJ0rLs9Prf9ZbdjQPX3jEjHt
PuoaCTo6lcmBctql0WhB5UYrgyKPrKrmZCitRNFs/EzwSekZvZjz6Rwc3vvYmIjihlIxVDt/hATP
4d1KkZDENc1S81a+wjs8NA8XVE5E0cRHRS1kLUrv7GcTnzU9/Ve8Rudwa/RDNN6ZvbWFKGjoIIbi
hKa+whk/5vJoq6CjE+l7BBfRxQVjQeW3jdxHiU22UrMWT7MPWUolWTTJZwZP0k64+6gj/sl5ut0N
RIfVy7/C2XjjUhBHSyHzrcywdNKlUX9B5U2tDEpihxP91MVPgs/L7y6uyOhZwjBT3vaDWOoqOkyc
w+pRDD2T6X0f6RPmj0rD9KDcSVV/QeW33YCPphQ5yOv9hMh0jKT4zOtpv9DYW6DxjfLadfgpdRS1
g2ho6KACJ9T2FAmhhqY7CyoaiFeKSFV3QeUp6W/9I52fEjMT8XMOn+abIH53TPwLi0FqUPkYavm4
cDisCkbyaO401WSD53D+SPfF90ZBN7hcim7859X2u2Ww4w959FZqfsZfj3+M+pqsmpaaT1w/z9/U
vj6/gjr4Erj3jXH3HbPsG/G1b8EPfwNhVfDcG0HYL7XRALx/wr/3qff78AzAjvd5NCyDjn+GHaVH
Bcvk30+pY1QZP4RYhSwlnsXPTT0vdd/1zmt/i8VEqKVEgNVX/OfwM+RtgGiKP6wJmujY6BxYJEe7
rEhfOsupvwr135KZfpofFuCx88R9dv2VxBVGnV0dtqk2oS6YPd1NnkbbM/kVzuT8ET10184f1Ubx
pZmYwtXPKZdavd04Cyq/7WDLR2gpHaPdz2V8DgLWpcb4bTuvAfHy1GLEYWvsM/F0uhqIjg29EFqY
P6LvnkduYloqaMWq9ZdG2b8JyILK6x1bZjTczKDa5GeNT1TPMp41N4N9xp9YK26aTQNDkRiKEwo9
QULoEFZi/ijztc3dH6Elveevx6Pmohra9Wp2+1mgtIvPsp7Ay9wBp3mQIDzYXUaREzJUNAU/a/Ul
vH1TQcHSPpw3J5GWobXRqeDNOT+BaYDjY+yJv1B9PHc86GJW/q33cVwwmwQckl2JfvBL8rsE/y4A
exI/ZqbdibdsovnfQOFU/hS2ZcoNf32Z5uxD8xMBWXrKosTneFxx/dVb2iDz8HPppI5P/Vjh/+7g
fvWOp0aDdtpd9p7fXMtKAY5hLaic3J35SLxj8dn1+km92aHHzhP32eU3OGDiUmP92sFXgynQVvz1
LXerp9H41M8fnS5xttw9P74QmhnQTxnFD4p4ON94neD5H7Cg8m3+5qh3UvOTiQIIpaClRT5hPb1f
O2NnxtnTNuC73VXUQHRg6LWqMn+EffGduvqZW7QOF3R0jqu1XHkdNlxQWVIKkk2FuRZPk36W4mee
zw49wXeQ9I32u7OYUk/RUeLEDD1XpAnVh9AEljgfU6Er7ERdDscYL2e3UcQUn51fEvsrowlEUTB+
ivkMcjnewnSplNfug0+OETfNlqGhfgxN3sWEhVBDU0LQ4e1K/j1MPEyLBvbiMwkP8aciz2pT1c4v
9hP5SqdqIv5xen4FdfT7dubh/Vd26mwScDS7Q/a/weun4MmvcOYeBpWTP03pDfhNVcZ534UPd1TY
VPv729XPZ/QQiaJGvW4ivvSF+ICqhfPw4aGdOXikrkSo2WRyOu4zfqMYD0ebbSDoxA38ktkUXVBZ
DHvXBpv5OapEzBxXnz522JPzb+nqQFhh1MGvGF+G2+auaT39bZ/jxqfia/CXp9ZoHRrHd9093zjF
LrmqOSjLB/Fvj4J/6cGW1X906P3K/WTQJM1MWBpoCulpSOgAydmJ9h70g019er1HWo5pvfQcVByv
ftrXQlesPb/DlzXBg9HnlN+gVAYr0n9E2AS7begnTaZHZJlPNnoWNEyUt70AnwtHUTyIkssowzeC
mnNG/WuHTBEUPQOyW9sG6KMXoPwbv99Ut1tb1hVJyqBaiaJe/OT4BMNnDU8NnM6OI0gNKs2W0b+Q
o74G37aA3RBWZu0QNJhOcPPn0Rpe+YD60+86hKc5RDfVpsiugy7ws0Bpms9k+LTeCPEbpE3O8XHc
z4EdRQeRE4mh5y6NC9jl8mimcqab/gbg3vIHHRVw0+9ZeBElg9PANpgo6c5+6lYXoe5qGn7NeyBq
YR5+lp/4UWtz8NxtTPBdTPHj7NohicrCI0mqUeyjgBP2CL6NKXkW4Abs3vp/3yU/s6szvT0EHntZ
lOPzca5A9QQWE7GbJ5TcYiK5pUQYQq0nyMueFDTzNqYfKbpJ90HvjS3nFekLv7PHoLHpt9f/Ktb8
9Jvjh/Rj58n5J7448IgqrFfbk8lukvR/MHc1Pd3+z8pS9O7F0NwaoMDVz/CSJ371UzOKR48BdZs4
1kc3cB5RtzGJTW1qBJlluxWpzPrZy2daT/vFhi0s/vl/3xzB9Gl3fA5bBoZeqs4VAkKBq5+5yfbG
+aP+GSJBo9+Nn0f6W8wV6emc2xU7mxqXJdHmKOphSofR8Ytfw7Popr/P6L0/ptJswQwlCLU9pYIn
JWjjvZ/gTtxuKxol80h/H8UJ9Baxc3USTfnZHj+rfDJ6xi52yGkcw/182FF04OXY0DSh2F1M6QXs
8DiqEVTR7eZhNF6R3i0rYueGSZRoDn1loyj25Pw0/r8ed56H75+Dd3t4v/neKXj8m+9wc9cnymuc
h0kZuj+Z35970H1/k+APlfh9JN6hwEPysTfT60/LjzhF9dx5Hr5xDj74A3Qm1GxjX2TiYURk4XNf
6Oaf6KydjUru95H5LnzTn51RY3pnir9Eib8ncDP1EHrsPHGfDX507CUxa6Om+hbMZf6nu8Wzaw4+
9Z+MkSuhK69+gpt63RSDcra/9srosYxXpAeFeQwaF+Cn6J/vlvKTMrOVz7Se9vsBl5BXdrAd9LZ/
2j2fw5aBoZeqc8XsLyBNv3Op0M076AqEJVdGn9aK9KN9uo+kjV7/GyfRZCgtRtEynyPkanhm2Qx3
F1E6ptJsGRrqx1DBf0Aygqfue5uVtefnJc+7hNGvXWLnqJHcxQ2TqJ7SCp81PWMXxXJa+3ff/HYU
HXg5qBvE0Dqh4uWX5GP3tckTq1oURv2vck6MnZ5XC5LrdD9Fy9SfnjjPlN/o3Gsefv4cvPM08x3O
cZ/xyx++r/hm+kPAblnfxTyOor/6/or0g0J3w7Zs/u02vTsyb1QCVaTa4/NhPwuejl/d8SvOvg9m
lb+HNtPFc9z4RHLouUL8HU5q+aXWVev8/UEBNV01OjhWhfUHt/S7jVakpxnu+SMD7qLn2PluqRyQ
pxS01McU4nP4FvDeFwk7oU3gy1O/u7Q2GSM6NvQylD+ZWb/6ybB5y7G7sqrnYqnfbbTBYEV6tyji
MbmL5ir32BU/c6GTorSHz7qeuJ1lZSFOPUVHXI4qBzHUe564+pllsyF5goJ6h22uGh0bq8qjOtog
vaDyPEmbqzAiO/1Mx0+bTBhTJHyOkDPhg0RMsBnvKnrr24oOg+jQ0DOZxASS9WTCnUu8m/nh+W/Z
rErROOj2mkRy39Kuh6Nu3pY3qqJjKk4ltWIoEkWxJ60rK0dTSd89umaToH1T/w9euo4y/R1O5gtI
+tU+sW43qnp4VaNGrBu0Ij17nIVV0t8vzSxMJfHZMD9TxuMSn49zBaznNvPw+87B89/hTD2E33qF
Nzq5pVuF7b65isbu9QhZkZ7mpreq59XA3jmFd2RcGT08/ADm4+MH+GE2XZ9eZLj8wuxvj9tvwCX/
0SM8LPGThL8Yn1CzCXgcviWIdxf7iG7MVq3UNY/qqyAr0ksboar671Twl1HsJ/5eNx4C1fCT6Ono
lzt+P3nvshSb7kbYJf7TzqyNnuO2Z/ULSA971p29+pmcdy/MGnXfnEReuqzvYVQlvB5qfpUThDid
6pqNzO5htOEefpLhpcQnqKfzzsDtpJQ9d4ZA9RQdI3o19FKTJRT5Dmf2C0iSWSN6imidjT1T+KNG
u5u5Iv1of163lirSSIHTaVxrkobtLKUEn3H45PSEREyFU283EaWOooPIOTb0TKgz6Q4Sql06WZM8
3840q1E9jPYkT6yKQtW6Bkr7IawSdhek4SlJNPSVjaIOpuTSoNeppWGvV3VwufPZNZsE7djsMaxm
5+DPv1mzJ/A4nEvCL4TSj9jGem7pBQKsYhv/FmtF+kFRSpr+Bfe+Hqv8HJ4nQKnx2PvsHn8RmXn4
zEzSD3BOD01JT8JD80fUHLztqXgKfh9BR6dEde+FYVSF9Te3NK6BpmWc9Ysmuyt/0Ro/c5IC1fCT
6Cnx3gLfcRPL34OaY7HnuPEp/keciXF8OHbvmzUS3CCfHqiTe6+fjGpcb/xLj0EVC062Kuug8m8X
WTXNz9ot9affRxBGB0N3/F9g/DalQudzVLL7cRqx2ug3c35qtslvn/crC48EVVz39K6ubdKqsPHL
bDHLQjazbeQLNtNP4vNiPDx9Yq0G99nl93j9vQ7fE/YbhfAO7HrtFk0cvW1nTh81zMF7X4MnQ2jw
UJ08BRPcHWFUmErZqlHjoduX//YFKc5W7dnmYjmokvvJmQlZymAK6mm+cTAQCWHjXYSU2ooOEY0N
fXpz8Ni9n8eG1Nhd7ebofHYicT6lEapvCZTmIlt1l7ZRFZtEAyDLSXQGn4yeMYsCOO2d+pCOA+dj
5OXYUC+Gdv0LpFryfFx56b76uXcbWAU3/gED6KDqLmx6rGEysn4+R93m+gl/IR6Yh3+cy75fh1d/
ET6ogH+x9F1M+MPhI/RNOehWrsLavH3OaRtVYf3fG/+8PS4f1U9gc9vqO8/76TVGkho9jY8R8Jjh
E/w+/LnqEeA5/evw6S/Ch1X+9+BBQpE7l4I3TOat1SNosm0dpe6vAat6a3T/Kye7X7Lq2jbnZcH+
RHb5OXgUVRoPrWqrT/Ds8stDX0Xnpc2redoyvMhp7sLY8jlsevILKdcnkIhhvOgmJuX8EdZ2/Vk6
BurXTj1Vb42DFemb2fSwgzqV2UweZTc/LSZNS6t8jl4w+0Uk7AS6jrpgqD7trkNEh4bmCTUvheau
fo6vxNGTRXlBr8fUKVnmstnN0W/NS6Cz2OwUsRxJve00fuYkRSjF+RTrCeGZT6eXHYSUjvPmdwtg
6LnmCc/Bb3r7PNh4PcM5gbM1ugqqfst1Rfp1bA5KspMwkkLd5/tZvaXeeXZ9bsywDF+TJV+H138R
nv0SZ3ECaf7t89gHPhstsp2gwyXPadCWr/p5dFlMRClpuY3r1PHS1qvwR4yfbw+Bxw0TSaM39vJp
+N4vwk+bQAoewjd0sIKSVVt/hMk2sOraePmXHoMym03vFKq9y2+IPj8HR7UmY2NKDz8Mxefj4Vfc
YBpeOAnvV+CEGg3jVy83Bc8+YqucNuhT1fn5Fra5VdfGcwL1sBWcE7ddw98zZDOyTe0nlUTH1fan
l+NzNJAdvQQ2VzU66xt75zWsjWoYQq2W+AUM/5oqHpFVWNu1dH6cuRPAtnOrLo3nf+lBHp/s3vlH
aArJCj/HH47Bo6gSqfaeuM9Gv5nhC2K+SoR87Pvv8XhoJuEHMwb7TSDBs+2Crx3p5ojKvZHNoN6D
Nm87rPur8TQL71Cbl5w0iuo9BVmvE+hngkoim2CPa3yOftM1PAlh/c3zk/DDhpGh/znPYULHj5M3
f7rNoKXZGfgpOJZNbZmuPzf+eTwCLOsBGNrO6STbLJtNs5EUDqdVP9UTScil0I2m4Tsm4YOKZRNI
ox3k33rZ93j1IzUFAK8Tth2g4J9BXXRwjM0NtUwelmzj/fx9FFUOH2JRFOez6QudP9A5PWqlMgkf
VuXn4OPHxAQSfyEUbEy2bfh5dTYbtGHdzQ3/XKuOvYQnwf30yGadr57XCWpL+Dk4+rjS+PQ58fPx
MFr4iSR6JulFm9msLalJeMxQ5yk2gZQNoUGlQFCsDek0xVRkR16nQZvb3er151KD792t8k4G6TRD
2+T7Anw5Cn5SE/FvD00+zSeXZ74ZBj9t0/CFwk/CDyqDvybg0F0ydk+8i7xGqJeeUv2HGNre61Sr
+tKyKdPSK7lXrMym05utgh9FlYfTQx6ffh7v2ehnH70+5mtGsJkQtmsSPpiDf3RNIHWundwxf5Ts
nZw1Sp6Rs9mgLVM1/pce2SrOJq/okSweg2zT+JkLK118Ym+GoIHsA20dffCeVp9Rw9VVyRx8/9rJ
QkGhNj18jcfwOg3a8Krhv/RIV13bqkmUI1F1DPIPQdrPTOiMzTTJJPgs6Bm+UjU4nR16HzIzig6C
6CB1TlnCjkiev7cpCW5YmhEvuSI7BtcpUfV2DbQlgDqdkjaqsmmVzbSfT6+RmHo9PLRYNfr4z9IT
ScE0/PJZ+NIkvPPUfpb+BlJiCt59Y5FV1Q+F7BPolOSOoB8Nrhr9S486m8lfzYRXRoZ9/T0aPIoq
EUqNT2/0+fftGHX5rjR/qRvNwhOT8G6X8hw8/jCoVL4VZ3xiZiib/EswaAuqRv/Sg6yCzsfpVP1D
VCzVF6/JT/UtoeYTP4sOZMlMwxttnSUzCR/VJOfgx49n3/zpVjltt/ygQtt7ndCqwYLK5D6SWkJl
yR826PXh2hJ+Dh5RD83HzpPry3N5uUavn/ma4i924pMIXVx72j2fki9xbvLPN1dNG818AJXpc/OD
f+nx4KqubdCnYRMJk3/WFvsZm6ngE9HTeq2590Cm/G4cfcJMRZ+D+ouh5wrv/3nMXj1k62mj7ZRt
mVC6LKg8KYDODP9VLakdtfmZn0h6jPucf1bVRFIwk/TdQTiwh78Kb9SHVf5v5mm2WX/couFD5ab5
9FtS9gnY9jMObTZoc6uu/9KD3IFzLlwK6XuQK8ljpf0wAPXrAAAgAElEQVR8Dh6FSRSg1PpEny/a
ndp8Q0ZdXrXO7713Gl46Ce92eZ5+d4c2oyV+rcYv8aBncB9Hsmq3j5LsxJKmYlXOv/SAqnZBcu2D
38K+e/2PAlyJUIo+CfkY1jx8PCdOw2sm4akYij0JX66pty45bR/2wCvQL8arug7hkc2TL8OEsuYV
4trcKlxS6+G4Os3n0mn40pbqSfgkoeP66GH7xDvUtkY1UeFOg6T0Vb7CHlhbkvsVr4v+UO1+Dg5l
fAKBau9J9HT8mzZ/+/DL4nS0mqBpA7vjMzMJv/cE0j7TRkC56YTSpe18G1PWaKeT6q/PHsZy5yP2
k0gw2OPTz3X+KaPn4yq3nu0DbBx8YExFn4P6i6EXMxcvP98hKEcpUKbeuZQ6OrQZ0hb/TyRdAHU2
2zZc1g6BtXUn0SSfQPg0fmHR77H4l9TanfexG2H5XX819Ewo/EV46ObPzluXrl+M5wRF6No+piZ3
7XWy207XQKcE0L4Hu50O6edwnnW4RRhKgcf+V5CSE0n+NPzaWXh4Er7wRXjkFz/+O+i/zvkpeKjt
H/xsIicEtFn/E+m6JXnEtlL9NWV2M8lPr5GbSHoAjx0+r9MnkJ7RTNKct4l7qOwkPP5FeOBxDtPr
ow0FtYtoN7LCmWq24f8TKYn4bV6iRX6CgSL+pA0fZm4JHYTPx7ni+mu00UrS+Xwvyc3tplHlpcZ7
nrj5M3zdRvvzkUy/60QPLmXFR1nmSMbUr3H3qpaqsvLVrL4u3Ds58Yh6eBLTfHL+SS4/2OgXZv0S
4fdD1HHQDs21mh2fyCT8uUL5L+BnTiDJ5ttruxFvnSzimaXDLHxZZ6e37M9EZes2UcnzkvjJmYlZ
GvHp/cBgPdcF2Tj4iD2NLqP6gaE5QsePif/g0SNocb6930u7zJi7Ssws/QEVGO2I6g2U/sCYOhLy
U3H7wfyMJpIGRz8+BB6zE0mPx7lmGEiDUXd+YJ7dndUOfYvTeaqZQBq/D0ZvBG8Lr2rCuzr1Iasd
Mle4HUZh6c+oL7kfpHft96F+LVIHUD3wq/wPS1TJUTp5IumHOrO9VnKz8NIJJIBN4tW8PsIues59
O5+L+nNnFzUzrKmPx+Pxx5IV382Ev26p3WQOsNzPaxUuqWnmw3iMujB4bup5rfxpmjkL7zQildQE
kvn7HfcZPkQn3tNvqDY4RX3totIxubnX6Xm4BprdC7UZs33XS7MUUo2fgzM1P7vj6tPP7D1zfj1B
nd/glME23GTC097mOWp4qv6PHPklzuFcUv2ip+yKoX1VUHT1kzlhoEy/v/5r7OrpwWgn/Q+YY2b6
inZX9ZNXM5AU4dN5EvHpvWPA+ky/Sx/gg/G0+o0QHRiKE2rMJo2nilQT77LvHc3DMLM7pG/jFJM/
A/ebQBsCaKrMV1KUdDv8xEMn5ydqKRI+jZcnfqsU30y/m/uUDhPnYwDmhcxzl+NTfg4+eDhilf2v
xTJBmd0gp4N3SfWVFTaCDpazg97Xt8mdxF76IQXbfFyjyuFDcCIpnIa/xFFzGn5Q/d6svCKKzcKP
q6Ma7zfCzsHPmECC2uZ9GOIWZi/U2Yn4GR31rfxxGrm914pY1K0gxQ7uqzl6NKq0Hgr4FEzDL52F
z0/C20/pOfjRQ+0EEve2Wwen+BOvL9hvFPqfSM4+++FP/X4zLUUc7S7Qfng/fx9FDw+nC/IZMDLW
M/oyvNGmLfRX4cNJeO8+JnIOPgyh2KP6m+tcFsIJnItdppI0aBv8W2Nql7WywasmgtT5HQn9HJo4
hhLhc3iWg2fOrySo8+rNYm7AzMbaGzwbv8WZ/hLn6PIndNEzOTXSNfGuaemao+cKdIgXoBzAjcjj
ffeGlPs9pEmlJBXxOXhJaniixJ76xZ+cp9FrVD8wVEho+M3NQaVrqX6+fQM4L4Vhcs2MvJ1A1wZQ
4nT+FUhxSQFKbUt9THE947dN9Y31s7374XoaPQZB9Bo7wZs/j/PuDcuHjO5Ycm5iuiucm03NI4f4
vgYKvZf7A2hKr1ktz7BlpZ/khdDn+LH/7Pr8kfg+52uyR/eHOd4hOoGU/gqSdSl09eXP1INbfAyv
pd+nwcHOk0jJ3TGl9jvZuWWln4Pzsj7JWT6xafh4Ft5qLZfELDw7CY8RSs3Bs48aBb1Di9NlBVV/
8CP3u8781uIWyeuWerc1+Pl0H71vMXxoUXr8aQI+H49TBeLRb8PUWXj7NIA6hlCjZfz7Dl6x4aPr
FnpB4y5NPF4K46Vd+qn66fQ1rG3A3DlE5pdGvDglLu2dqCFlq4aP4ofmY+cJ9hGwXkburRT0hq93
Pa3ez0H9M5iEf/JfQZL9+83OCSRgN2aX0jVOouvml0O/Hg//TavCnFGy569c019Ve29VP1E1h1J2
8onryfwth8qhb/hxGWH5XQ8Y+p/5tDIHP8SUnUASCaqdJWqGk/Fy3oz8MYEuCaBEF22YlOxVFEQl
fqaTKMPn9XUbv5LhW6j+HvvZgyepEUUHtp4NrRNaSZ6Ykm3RsydgTpualxfrEIPvwh+3Uz8AjmB3
ibdZFlGLkGK2uo/etxg+tKOo+ST3hSRsFt7uQBfZLPycryANKtnLn94bpvbmNFsmfejsrsA2The1
W9/lD9W7XkqiztaROAywe+hlIqsMNAcneKLUeExOw6dWVe57l4Wz8EAlMQmfnoNH72Iiq4AHKVvx
rrONZbrIyvFY4wQq97vEZc+rYW5LnFHq/cj56QaS4SPjkyrg83F6fn1VTcD2mIXH7mSSEhr9XfMF
Jd8rTu+wS+ltn6iQdGVc6SHsawraP4X5yeNtJr/UKSWBLtBnIvEofng8zZMbzrNRhfmaEu8vqCt2
metpdX0Ovwp/nkCCv4K0+eVPZD9WS+Zip3RncVdgm8by/O84icTze9xdZnNCOLtFgaH2L3KmC9sW
oQmYaVoa8Hl9bfJ40n+/3zcIPi3PcZdB9YVV9F94HD6x72zCX34HV0/OCZrqYu4/UXHdGV4BdK1N
xDsF3Xz4T+W8/doPUltLWuZUdAdRhZ+qC6HHZHrSFJtICmaSXhM/tJ/sToxm/itIT6Nt+uVPrK3Q
ZbuPXKnFKTXNHo/n4RpocifAydg7JFpaXtX4vVN631FduLbg0fgzi1DaPg2vn4QP99k8CQ98BWnU
wRc0+1YJWyRvbbsi3il+WLsr01Jl0t3cvY0JOYUa+ESL2XXyq514+3FdoLbo0fizO1b1cHr1aXj3
i5S9M0nBtziH5+pXeISOG8aaosmTfR9o34WZj2G4j0QFcFiixSl14f4UVabOSdKybYX9dmC6gG3u
I+ODO/xkP8wsNeDzcXp+/WW4s/DDFn3hZuHzk/AWp413fwJtqbfffSpKLQ3GDdYDpVRmzs3uQrQo
KxR/LEuvX/lTEzyKHx7PyX5yOffBS2a8iui7lnh3I5MAVr9ndR3Q7jn47AQSspXVIq24HEVZUWq5
dsk9eCvRN5HokmMDb+ErbPME+7puUksC3la0n3H8tC9+uln0eiU0N5H0+JkF4vIpuhU8gRT8gNiv
afx75QfvyCVO2Rsu7BpvEh5FmoJKLcybDCrP63/lLD5wjoW3KCCd8w6IN6H+opAfncGjOImOq6k7
6i/asBNJPwbaHcAS7gc9ueRXkIBfrf+3jRy8j7oDW8EVl7210MpvCnQFWpzdJrlTJ1CKC7MF71p4
eVs2lbyrUT8HJ0pdCDUen5+cJAngeVVa7+KOSfhor+AsvPujYnPwxCtxfZR8/aEPOrzx4g+QeaLx
TqkPn6q8AJWJbBbiDwbxsvP7mPIGYd7c3OcHHsiPKg8PQT4fD/vpoMLDs38miZ+F9ysShI4eosP4
pYP3cJOOz1h8VGIfQMu1S/GB82+NS4X5qzClQtAzfleW/hZykCYeGQ+PZ2I/uZ7yAKRLjV/vlbdt
uK/nPc1tntf6p3od0PArSORU0u+DwfeU4q3MLoVZIXzuZ87EEjOhpi7fgOZyAaDCtW/cMsVN/O9r
5XRqGYGKIRSalp8On2k9ofeW32nQGn4gBli+6gNDn84kPPQtTn8OXvjVTc0XNcOKuEFobqWCaSna
+tqK+KdygJLObogWQcVmQTTlpzueQyNp9BAcyYfzSPalUPfdkpmCJ7Y0OsRnD84gAZc/g9fn2o96
I2TeWEQF3ID3bP3YMy3XkrJPMokEnCXR0uEmftQOUK9HZT4JWFvwyHqY5PPxOFVcf9Eubmk3E7sy
Ln5efwbnaf7yJ/9aUe8A4CPeAWbnB61SwbQo3nyX/8qZe3ApGVFb3Wx4qyT+Lmbe7egna/DovV/0
UDwNH03CG42VEk3Dx3XlSXh8Dp68d0n0NzmsWPLxmCQp04V4oEigJVE3d9N+W5oNeAXUxdvK+6gB
8/AP47H55PJ0JJPpWP8kvHeMUcPAUPupdfdn+NsN7l3iXuDKm0nwZr6NpCVSiXL8r5y5B3YBfopC
RdhT4Ka5Jd/z0oP6VGBtwSOIz+GpDp4NXxHjRWLeq05f8HL/0+r7rH2Nk/z/m/QcPPVtztLM+7kH
37Mw43Q5vXOZNJ907ZJ4oLyNiSFDULHETbMh/jMaKwn9tSKrYkllfI7lQ+xEfT30Cz4YhqLPa+11
PXoVof4cvKek86+MY0FjUgXT5w2S3vGWJnoIzyTRlgDKJ1N8V/ktY1Db/KwO5I3H5DR84tuchTl4
dOvcV5BkM0j5wTvyZiBa8L/zMz4s5w74rogKpgWwzCrj/8qZ2rPdF2jBK8Ke9Vda8O5q8hP7zIWS
xpS6fKLzSPYrIZ1KCvaGzcJfZpDMZ/FvD713iXyBJYLqGho+gOYWmQqixTlw9CA9iQScDdGCVzS+
4IJd428R5nX2sKQ/q6aZJp+uLaael7pXQ9dMkrdr0FC72ZpBikMo9shFdXAAuOVcYb5Vt/xgXRqI
CqYl/478Q2ALHmkzN82zyP+hxI+NVwAtbw/cqsGj9w/o8CE6kg+H8g8zes6YhHeOgszCo5PwwG1M
g0r3Lqb26NnAXb3DLpJeu6APypNI0j+PdkW9Ae7Q+QdV5OflAKOq4aP44fGnOInyeLjPrd8y6ibU
D5gCeBr9nqNZ+Pok/OihdPnkygRS4/RQOI2Oz7PzDZvMJ2FDeO8zbPaNW/CKfAPfob4nHtRZflZu
qEfmkQa/zDB3Pn+L24/tj55OfQZJc/mTeu2BlnCTlR8R8+TgBqKCaQGEO5Q/3qbAPjKiFn4F8EsZ
doBfa8GbIn4zpPysDOSNh8fHDp+CWfjSFDy4i9wsvEfo+PHwYcfg3XmnhD3q72Q9uWaHuEEiaYq4
9wfcJBLDpeIH5v8+WR0mdCyAmvPzcoBR1fADnbgQ6ggz1tOBTT6T5O4QnYW3m8nLn8GrgFRlBOXB
NBsWfqzwhkyFhtT3MvivnN5HNT5+3FL4y7HBOwA/NNxQ9HOQYFKSZueRLs8dPBsn4d2dj2eQ3Oea
GSTvUS56Jt5PcUPUYYKo8B4qFUDLtYv7IHcbEyO6oIIH1epQ9xLeM95g/yK4v26jT+bg0fvxeD6v
VwzPp790Et45TnymXs42CR09BAfv2Rfaasm/Byd+LsJzCzv0SJp8byKz8AyXrW7WXxSro+6NZHaI
3w+2rElIg0eHUzGqT6d7Ovnrr2v8C0TenNQbOJo8fY77PIHFlLFJeOJbnINpduCLmj3f1IQn1uEJ
9nAD89zgDnO+6cl0eSvIf+W0CyBqoQJu0P39TG9Iw0pUTPDTyFTRNPzjcaoYiBoET24Gntlq3D7K
oc5TawYpDqHYo9QDosJq2PAjY3aIGwq4UMwNHjBDeIBWxY+GGxR1KL/o9beZ2aHfz2ggP3xIzCOd
flbilvpXm2BQH+1mfPHTP3XNDFLH4J1/F8FvyPRbPf0hCzviDZWKawv1nmT+K6ddiNPkN6l72fYe
4N20Oqj8RGeUrIc2n4+H/dTQ81z106C/GurtFDPUfkpd/vR/78V5I+BtYzXQkuo/FPCpnTvGDUpv
Bl2cB5lJJJtWgPewgf8DFXWEP6zoWyL9psQbvA/P5cHoFRl8Zt9bo4fleaThL717IsmbQBqco/cc
ITScg3dfl0uv3wdO56gibEhLKvs4wRuYHeyKsMHZR+qdGU8iAfvPnC3cs/6HLNqg/W+x2fHScK0A
PlRY2/sxhpXjDpeTO53q9Zcz/nUR706zK/a9u6fR9dk8g+TOJXnzRoM5n8d53gSfHqnPE6Ebyncc
drw0mFvEPUXTSOd/a8xwXHGT/9Mhd5IuaXDhlFBKprCfYygNSl0+QT3j3zj2mhx6+e/t57BHaKhH
6JDNyrffU6sm4xW0pDCAVpHLanaIGySSXrtcHuBD+EwSxSt0AbQ8wpAFVD6Qlvz0B4xDSYcPiXmk
x7GQX0h6JKfg0W1Ts/ClGaRBpftaAA+ICqsh/REqfwLYA4Yb4A1ExbWFeD+eAPXyDX64wg+R1wjd
QP6uYA+IN3B+Xk5k/DEefd4PD20+H4dnp18QNwsvnElyd5WbhTeeEDfQo3/X/p+9a9uOVNeBpNf5
/1/u8zCTBKxblS6GzI4egi3JsjFS2SDoxAWcEQrGXTvdIY2osYBgMBi36r5UrkdAbzwDF0SKaSfJ
dkA7zzB+onn4Yh7pOK719TTdryoHMkmOWSCD5L79qU9JuAmVpVwOPoGgkUIb8KHUhqy4gGAAElM3
uoVnULrAgAX0pe3yobLP0d6exE9hz3gN9FCY50Hh8Ang0xd7NAnv9IBk4c1aPEPabLa9/mkzLAHt
hNujAR2YqRgLWpA0PIHo3xrbRAyHb5JeocbXUpTgAcGCMpCqJaNolteZlBOrA5jGzGmFj/w/dK2P
OINk5d2rGaTubzdhQTkvlKWxjL2pYDM6mphXB00i2dAKwHgoqG/fULprCYY3D7ZgBD/5PNJ1kCuc
0nmkv3Lixh5TB0eSeoFenz6slCrkveZ2/0YJNhSeutkCkNgwZ5EOoICdzKhoQXgad/tJG27iMUMW
3NK5Fx4+IzT6q2Nf5XwKHjNggKhQMsXJDJJ7G08VVobpJo9F0jLiwogaC0poZqjo/9bYpgpu5vGy
bZ0bIng8oRvhjG8JFIlqKSoO5ZG6E0meuedkkGQBuLYwgw6Np8YQDQamAsEAJFLl4ziiW3gAWhOj
rU+RpXj38llefonAkRIIP6M8Ug4+4TzSYCLJTcMHnBqEKkwXQZGLGTIswS6fnYohQXm4aEHSYHxn
AEXbYEPBB5vGySna7juwwGb4QKoFtoYAl6IJn+KuF0NPDjs/zsS10vk+58M73VNZK2pTiV2FxIWG
BduRrkhpZI0FFSSVKhfd/xXaYh3zQApfqZtdpK2bXvwUBbh0GZlVXocvgOlQiPExRBh/xylVPgRT
/EtjLgk/8vvJGz/VTKboq92ku9+bkAcz8+4tvO3TCUkIG2aLqaXw7qU4tN+Nn8wLoUY5yCPxSXh+
kwm2stLwXp1OwivM6uufOOM/Fw9RAyEwW/RIjuMCoMqFL/TCnwN9PTZd8Go36WH14Kcb0NaNPAqf
1/FKxHIwrpqCR6xoovrjz2j6vKkvIagl2OaRPo13AyNqLChh3FnlhQy/gpt5vOxe8Jqv65i3wgKu
EJXUIv4gVHmHyc0jVZETNqliqKORzyB5pRYEDQVDEDYMvHA/YQNTgWAAkrOKcguvAm15XPXJiBo0
Xc67nW0IP/23FM/DAOHzOmjlpSZtouZy8J517f15B/2zGST3Nr4XQSOFYecFqT1C8yDSgqSayv8A
uKyMAl8bLIXpZe0e36LtA/ipXEqPpZaMolcBLzo4QYEa8GRfV/uQGSTs55MPI22U/vVP59eS6U80
s1RM7Ez/smj6g89YUPnhUKny8UY+5ezYMvBrBtpg02pZHEV5q5DBT/9VGhVJDfzEH4Qm8kjH+ZUl
Tw3XhDJI6OPPy6Lizxr38hIgsQTj/pZSt6g9ZsMGo5h1JgmgyqYltIztQc4CWCF5yTZ7zpg/x4I4
Gn0WmUdaHxheJ4TLIx0gauYaYxkk82zKGSSHFV88WHAvYrYjY9YOj6g4ZrmQKP8vPNEcZ/StFM2X
imzepN6InytDK/j4eUg97I0mLAu/sr4EXU9DPVOlLHwxg0Q9CJ1HUINm1dHmWaBNICrBQDDRvoUH
WuMMWFCeUdBeckWdtR6uPzn8FOZaXgiV8LkO3skj9UAnZFZhlyFUYY69/gk7Ra/zTbs2SLQ9XICj
ljd6AaApK3QTel6b1tvIXK9a1ntCOyn8bH4hdEGdNf5QMOslG0Rdhv0i0wNe/5zyohmfbxpUGhhM
BYIYDPyfKUlYy59E14IV2Qvs7sXT7DGJn6JwQUqfuZzr9cQhP4ivKHHN3Tzph6rxkc3Ch5n37w81
h382eeibyaSaQbvfGwgbxALbFCAxb+EruBkCaXp9aVq4kkjYY6V8TjF+foiCj5+FF0KRLLy78UTz
71wbJIOEZuH1dUadR1mQl8RUDi90UzRs9X60WTGigQYF3HIkr0WhFTfhc6JnK6Bej0qKSbXQTCjw
JD5+HlLPSimxeSQ3wVO+pXdtqE8/1/GatXAqfASlrk6kUUSdohomJjtLE2w3XJcIhpR8FsL3QBPn
ja8BkWLzcpV0gZo46Wc8fpIvNLkl9IXQBX8ivDrxWx+G2vbCMdmPP8/nrc5MNoM0+PLSQk9y+Ei9
GNuyA1yQsPVFFoACGByq8mtDExUvKSZOrtc5JyVizC14gX4BjFPRKCNZ+EPSTA7es8xl4eMMkj93
zS8vrZQEs5rvcmMAO2kjeM5iAYF6n/S/q7iCm3nkry5KPVd0xKuyQ4bbUfgpCjF8KmOSFXEa6mlh
EeRqxb/vqGp9rMyPWgZJyxulMkh04kicGdculygijTZ/B5pOS3V+3yklfwvw/4UvMFbB1FJk9ZNb
SLfAbHmpGMBP4H16+oX66AUm8AtNUE8V5x5/pp5/EgWT0byJ2LlpAI23U9hPJ5h9kgGgiXM1+4YB
dch3wPG0+hDpmIP46d5SKqXzUCH49IHpr4Z1aRIZeLCpnoZfVSwhkYSHJngjgubEBySuAWo0tPa4
NxU64O0vvS5C2zA+Bl7QTOD8gmKs1T046jCkxIlzFRjsnagJOxJNNc4Xv+dhqGOIzMJ/XE8zKsqS
M9lx4uhe5GyNBnAoY9SATQAS/ikEt/Cx4fxgq9NK2mldc1txNFILF9I4KF0gJZCUy8I7H1d2x5KT
QZKDsqvVm3dv4kOGJSi6zwY2KLbUxhGgAJzR2HQATdjlB28pJv0nMoeJ78BRVg0WgECqlM5jsuHz
MuoAqL6YQzl4x3qMoUZFLYKvMSUQNBT0+NMGNiiO1IsI0Auchq3/HcqFq1A45uqyk7Rb84CUkZrf
m9SDn8KcXrqMyirLsWvnEp4f7BHhl5zIh5x2Fp74jFOWOlLvEdVS7jl2MASfHQ28SrDdjg6vl8+/
hU/jcmKVyB5Bs9jwAszDtHpwlJ6HFH4y79Mb5bWm7T29jSeWf6da6BmkdZRWLbyPT249+a1mMhZa
2b6WoQ22stSaMCAcXgnh/pAKoAmr4Qjx8OAInNONPnUPjjoMUVBiWy1dihZ8Ip8j6Rcln4FHLCiC
zONPfTqUkgTVDYmj+5CTY1viXahgKlQYx3Ecx0uNpqh7thdFAZ3K5OJTWzB9I0/EUYKhAqlSSrwQ
Kt9hMuCt91moaa3lI6RoE+qxaMbPQc6DYpPhOoQKzRj3cQDfwpO9rZp0lCQbkisfxjaMpGzN4qgU
OPh5rDqnUVTgU94k78wj2RkkMapr1ajgLy95U7zqtCHoBFuvBloYGxRbtBFOyC7+p/BilDYZZu/p
GQjs5K5Ti4ukGn3oWkUcjQVeQWPFRa+i1C0epxR+vacqfbgfctrfcWpF5ZPNVAYp/euffrNShqgl
rWSwN6WV4DRS4nNO1eZpBxrDpBwNLVgVkgtvZA4TcwjZiaOGVhJHa/ipbkSjIvs+vZtGOr7TQsHm
FNKjU0jJN+hrGaRQQDoFpj3QCGODYkutiA8VqPKB8YVtC7KDgM+PJPIy+OyUv0w0SuIoILALGh6E
SBpl4Y+F/C8uc7f0fksVQ50qdfPuzB2RQYIRNCXe59SGVsAOjJUptFtA1LOq8gzUBdxi39mFJblu
YWzDCFXt9MDgZM3LEUamVpAsHTUuxfMQkp8jHeUUfGSm8hGSVsxuQmMEVbrV2CXvLjkqNr7UMC1j
QwjBgBd0fV6utG0sQ8RCjcru8KWSt4I4up5NqIfgp7BmQYZaPMQ+zoesb25zHsmymP0ICc4gIZMb
Iih9ZRn2vHsbWiB7N1bgAsjWy26OLpCAoDpJ4DJTWqIN9j6/Mxw+vQQz+Om/JG7tzvw7eRU9CexE
n4sGthUMNWsfKt+fnE4EBY8lP2+sBloY2xJ3Y4apEAs8jJRZ+Lh5HsvTYICZw4Zzt9vloqGMo0pH
Uico2WUx2crkg1cTEDmp2g9F/AFn4a0fU8Y+3jzWDO9XyneVFH88mEu9z1Un8/OW2sN+Z/nrFj4B
+CGQVheRpF0OOH3bd8GqxU7jp5LUUDBWKZ1HhL9PL/A0zCMxzhI0iT9Cgl7/PK8h4KytHHP1Sm4h
Hu6lejVgB7bLFNotQZ/9Ir0wmx9A4BWhXm7mOy+2Xv3oq64dNeEosCEdf59e43zxaw9DHQPhKDa9
QW8xepGz0SH9jg5GizsXy3YVPcIOYoFt6kMAaNy4D8mTa07QbOBaV3yN6tdwglH8/Cq4JXubFj4I
VS5IUwreN6al4Re5LnrS80+Q3VfFfL0DbgObESWblYBTNn2Zkvo42gLEt8fhaQrPKqYahmGxe/FT
GcwZVE5FoyzAVN96tqfgPbPBiOKbd39eJhEUY++qdgxjZfcCqkmhvQr4aZ9y6kbz3SfX3sgwN/03
OxxVXS0ncZQBVB9IjeIysDh6Yk8NNdwUwYem8SFSSG+jRvwPTpk4sjNI7EebVnuVnaquZ7GrymWZ
rNZPSCd90XoLH+NmJ45TBK5bPnsbcFYsGrDqswQcvRsAACAASURBVIEtj42fHc9BLydDpZFObyxZ
GoRqnEJy3qDXT1qWnNt4Mc32BdGPILtQvWtzAbJ3IUksiBmvwGRhFNnpINv/YODkIiRgw+HqFpSS
jqQ9aaTKw1CvaU8KSWGmnn/CCEqxjarftt6moxqwV/E4khTgz8rCx9BLdw6uv6wZjA31MeaDKV83
YBXE0Rx+KmOKX2iK36fXpr0pj2SaiVNIRiU49REE9cWUb2d8rQMMqbYYO+qjiCQMqJmaC4DGXYd9
1mOCsouxqcb9wJkxjAKlwY5jWBROOkrJupF37+TtNFKvm9h5eKduVaIkvGDhr332XN2KW9WVDoRb
CsC7sCSDf9EPKue7YieBXEY6r1uf+2S81W9jwGoQaUQEexBxLunw6UCSjp7kg84TQa005lK3hC3P
Py2GMreunnHZXWkDRvqDTFiqAekqrmJKqIgLPumlq8UMuIdVMTkZgXrj1Sx4T/8yz8VbrOfg57Hq
WHfvp6KJRip6ujAYYiUEppoQTyFpRe75p5lBgq+QrsZUpx34SCiRWklQYAGWgDWLwf1LD6BHeOxg
R9xMp67epgXc52aq6SNUUEEEu5EXVQc84Q0m3EhNw9vV8OSUEgKltWOqinAPl9sXC1wo9gBqSKE9
uqMrgMa4C3dUjnGq3wpwUm1cpTqXq5bxc+Y5qNx8jqWRvBSSy7jh+Sfp+ZlqnwNCvTJDCxoF7FXc
jCoM0C2MF6LUidgkgSuUz+7D0WluplrAz5WBPwe9nEeURpIz3JtG0q0JppdCUvlKqfL8Ezymqnu4
h8udANJd+BILDAZ5Cx/2Vz1h0M4AcBY8B7GQ6Q2r0kcHP49VB3iLaSSNxFMmhWSUFW7L889wZctX
C1zdbqK3VDVgr+JxfGE7uHzKGaMu3E3RhyJz/nAaLmibQ2YMZar8TCMFtXQZ/eVMFrQ6BIGX2aXa
j4Ha/4NT/47T+/1Ps5A8NnyWCXETTVwLHdWV/VN+JRTbgbbhNUsBYDYCJ7S2IrptcGooGcpp/Kw8
B3XeaCLSSN/5dV3MaYcpJOvdpTuff+rsgsd2Oy5koVTF9kbtVIW2l6bKD7rrNHOz2Xg5XaW9cOr7
qgGrPH6uDOY5qFEWYKowvtj5G3q7MZNCsiBUlgaff/qACnnEHufUdTuqILsbaQotPo7jugONgTTs
NRvPgeGB1Ynxj26PZVZ1KtLwo4Ofx6rDPwe9jk6Hua48kmGHSCHd+vxTZ2cgM+FjiV4OldsYiaDJ
IaShUZB9D5QcTZIC+xi7sIRCukSTut9S8YZ7EVJQQaWcRup1HTMPv9SNyo3vfwaAqiu73C4h1CQD
r7movglrIvofDbneILIEnkQHcBb8wLWgCut7BD3Mgqij8dNDTQ1QLh1fBrEg1iGo5kvhr4G2ppBq
v//Z8g/iEqkiRuiaXQbocht+cDRgr+IwLRQQn1ZSGdQOFHZ+OpIxc/5wMste90LfthmAcD6A1QJ+
Zp+DXsF0PWFn4wl8pQmp9aSQZGng+WewCurKLpcXtrukzs2EZhYkipgDKFzoBKCioWmJ64IncMoa
qnnukAtDXKgaHx38PFYd9jkomUbiPcppl04hKdzJ559YleDO4mmG2wGkoLhMONydGcgONLRcPbXA
DrZUY124bROrPaIztOgH0wKvxEhBBZcnpJFaU0jbnn/q7MzF94QJPC13bVR9CjzY0B5GHbCDl4+v
nMHkSkz2h7GZy5xYYpv92B0XFGcWrML4qbzd+K2jlB6URppIISmlvvc/fUDVlSEXGdVxW0K6vhLJ
XsVNqMMA4Ie7A60hc4E6gTPhETqXWLEJT2WiwofTMn6ujFP3agmDTwXZAOz80Ahoo/CuVaPibz2d
uWlCUKOqchFhHivdgRxl7iSQlikFeC9Ii7ebsTMInG2ImXbCvCq00hvV8AjgJ/cc1Easv3LbTQOs
BLC0kEJSuCPPP5kqA6SjqnU8nQDSbvxJtXjJVZu2H/gKreeLK1eGQShEqOrwAMz0vHChahzVEg8k
Zqgg05BGSuSRApx1Gbnnn/GKAx6xqstVhV2qfM8QN1UN2Ku4GX8QKPxgXmOigTq5UuRmMWEyv9oi
Lui1SBgvwCmBnyuj8Bz0OlInjZS/sFbzagoJ2oQ2IyjB7QLJtHFdCHEx6oGAJP5wDb4ANEbbVVCZ
IcIexoaWsjJiukOZAVddSK324dHBz2PVOffyjDRSYwpJYToISq9TXlW/sogzdHmaOyxe6HOheI3Y
mxDIBcd4BxqOkj0dUL8DOBNrYzNUei34hroQq8bxLZBBQQ99I9qfRmKpJ4WkgakUygnDjlhV5W70
sXJ0+NxOIF3FzQgEGfzfysBROFIMFmKyn8p1gFDIE1YX+S7/L8ApgZ8rQ2UZxWVs8sTz8flJ5id4
H1L4cVy/3dQ/3jz/6qfz9ab8irDn9z4PnIt8l1lt6LV3dSBuqhqwLTX6R0HDfuTXnOYOtA6kIAX4
WukOWhKv3OYVG2/Pd+zD6VoNjzZ+qgkltSg2n8tYogS7KqSUpSCdQvKef9Krk1fVr2fXops1g7TQ
hRAXowAUprAIF3zdwvNDyZ4E2A7DU7+a4F6FhEsCLt1kRlft3of6QArAp5/IOXGz9/Nm074UUlwA
j1hV5T7LFV3VDBeKYBQshrDIaRk/A4Vtk4sx2R817YnrWXVMgnD/ZkbcjJ/8+0w3pZFGUkhCOvX8
0+Wqwios4raJhrrQ504A6apWxCJEcQVQs0Xd1X27A8CZQMy0Q9Je3gXcCBc/mjhRe51enGVzGglK
IVmDVbidd++J69XkG01YizRk8LQTSKdRKRaIJBJqoTr0oH3FfH55d+1VV/tsF4nxG1V4YXYKaunS
4bVzOWx/5oJ5tdMAH1L6Yf8YaMO/kEv+7ue1iiRn0nkgnKo5KkhYGTL4I6FV83j26JP+7kBxxLUU
6CCl+sssUwz3Kqwuz60HpENdaFRx/NTu45VSZxopmvr4a8+VY9XQV+i33r0T13zSyYBRuDoZLhTT
KHw0oREAjLl/6dFPHcCZuHoEnKYdr0jIKBAufjQRwyhZ8DmaRmpOIXklc2JKCOpyH+llQENd6HMn
gHQfLQAaAm7XwAN7lW6Ya3kVJsL4noM7CoNLL8pKwS0J+LyOZiSN1JZC4pLwSQR1uarwLo/yiIBV
iEv1arE34ZIUGDvQcDzsgMETxfAUWqQYrPF05vcEfA/u0Nyo5fFTA5Rv2wZ8hmmkvi85dVulFJJg
pRH0WtWvUPW6t1La95FVwedCUY0CSBafaIWX3xy2C3oS2Q81xYlVr2kVnlj901Z8OF3Z5nWT2CEB
Bn0Ouo4wwM4Pi6JGgnOtqmXsFfpwnqz51asqd5unpPHb69fV8bkTQLqqpfEpgsaXxiTMFKk2O6qy
e80IOE07Fmu6ydd1HTC+Tb9SCkoJfw5qPAg9zrCpywGVoLOWV+itKaMQlLiC+wCRHRLSQhcaVWgo
ILtMKBSSSaTqcAPgx9jQIPJXGWix24/pIek6Eaw6KCER5Vyy4fM6mrY0kpdCWvs0KtlX6K3JCuZY
5d7rJE1+S8AqZChoE7C7EAolHUBDK5ZXRcfAnM+mqlcuAacT3jyxt2CA88o1Qz7ECiqNFL9On83A
B83h55/+aa2FaJoMX+eBdMQjWojowdVpCGwUUpoQylR4uY0Hl0bPPtUt5K+I0FPd5cW9wOlHeAiX
NpZAaaTLuCTOtWWRoM+QjLLCjRHUmjmo2gSkMO3z40TkVQI9ZSNBATi+JIsxkiRuLqBZZ7hX4eAV
mIsLoiMSP+UGSxRU4HHhcx1uBJ5kBkkzWE8hOTOhHxkEHbzgrR3hg3B1MtwSSpQJBEPuGWh2kGIN
h8z689mGo1edfSv2WK/6RKH4eUSMYhrJzQE5aBliqfL48zoOtUzdvUezZlRV7j/gaEiHGW4LkFax
CiQVQEMbUfSBJ9GxliSu0+Ca7PXH+mAzcB5uVRwd/FRsgc9BjRw8ssfE9N3+iBTSWoj2ntLWudoE
pA61YGyV3P4Yrm+ftNGEVZbCy2s6NfWcXWg9SlyfrNM93eN1Y1BVepNEkG+RUrIRa5V989KPQqEU
konn7onY64dxhKoTF7bT44pe7zbMcEs40UY+PEK38F1DA9eKTBXh8qfR4v9znk7ERA4/nX2oWrqc
XZRGqmXgPStOCkkfrFIyp6ABQasX06ZbHNZvrwt9bib0UTFMmJ0zgIYtRDj16FfOmLlKV+Gtu4JO
fcRWEj8Pu6CUzJ2o+oZ77G1gAkk1Z/dff4VePxpVlVsDywHnyRJhLBGpWOeRuBmtFgVtBwqfVBh4
xEBMNrT8lK/OwG7As8wOIUu6MRI/vTR8hEyypsDpWaKiJpKOVzDUqOkQKljo3tOf3YkLyDpRrZuq
XxYiFop9Fm6SaGUovhwDxWvPDYTsLnFVpk5H9NDh5lmPRkbC4uchCpJlwqd8q109XSKN5Cfql/ql
phYlTxRIBFW5vZcQ1ABGMkFuDwzXt1+yUe/ujwB5BlodWAD1GLvtaoz7NdAdqeEpEoN0uQx+fhWU
0gqflxOwskgZDzMaus8/tVE23L0z811zqkZv6hkk0V0hgnPI0YVbLp0ANNRHBwbqpYAzcRUGl1qv
PzgMGk25zVxufBSFkyUdPoPnoAf0JDQgzYTTb/D2kjxZ8HitutxGsHR7TZnqJbe/DHJyQLqKm3Dr
qqDsQOH5DbxpkphrchX2DHLrloFf7IEOjOpylNdWoo2+EQ2eg3aAp2PK7twftiiskPqBTeNiLST4
EndosIoEIcYSsdtLadzSFF928+5TCsabWnsQS55O9gBbJjVqaEqMH6pCr9Ormzr3OagHnh8ROe1W
xqV2KitcB0GNcGMQtOZerIZGSe/tjItSDGNoQCNibjAXAfAMtDqcoD1lnoHV1qUV6KEDMknzaQcH
8fNYGaKgwpH3HNTIwaMvLHmKEkP1iptCgl+hN6oqdytmsu64LUBcHaMK2U+Kq+aP4zgDaKiNDgdc
B4JVhOmUuE6007Dr7ZTv19DUtxLgp7cPVUrOc1A7jSS4EYEppMtQlKJ3927Oh1clgDRWdDRyItZx
i3GCqEJmjWrAXsUsgiEKif/KGfgV0bnDpqqEUFWt+Q7rm6HIGUd2pG67CD+PleEBqfscdB1pNgPv
tXfS8OgLoKsog6DVi8KJHLtxzzG1xAkXtikAICEoiWAXkgBacWiPBuy2rXNkh+2QeYQ8eHOBH4we
zKPEFwlCNnwq77k3ZZGkIef552mkkmeeaoCgKjd9PUARqQ4762DAuDoD3e6w+zL76hpEYKdh4UFG
ii+eyWW2FAwNews+Xl2uvTorBaUk4PM62HQWyWm1MIxK6wugyIw2Yma7mzg0HjBgNGcAARXD5IBk
fAsvIqhHv3Ju7szzhpMNb4sFNhZ1xRx+gq+Dss9Bjy/k1ESYFvj8Uxtv+gVQYmrh60S2SqnHIo9m
Iq0fEYS4GcOO43QLDw8/ci2wuc+GFhq3x/RFjo05NklRe3gAp4uEfnyRJfZkn4N+gmI0bqQJ/fxT
OR/weK02Tb8pitVDHiwajBxXx+dCiMCCUBLDzopiB9ozb16X+e7yK5e3JwAOsOVQ1MeLRcT56VUE
P78KKnyuTyPXaaplkeIc0oc1rK+SWQiOejXpWbCozotFnmJn5FTiOVLeh2LmLXzXEDg70DrTMO8V
yrnlEC8W5fHT/ixJFE7jsF8HXS9uTxaJyCFxL4BWPj6CMeWJHjNPhbgu4UmabDvhM9DsEIJ2DcuM
y+2ZOXhRrcRG3x4jFuljghCi9DromkWyHoT+FZEpJA2c9UrpBVCjqnLZC9PGc8akiTSCvZ4g1xjD
9e0nxfl2H58AGmuSR25EhWXG1aW3B7DX5LYOqMuHjdCQdEemt7PwczXCvA56Ha75IVF0R++orGwr
h1R5AVSv4r7bB512jw1+qdJIJBXiHAMSS1xEsZNC4kX6FKXOl4HVnoUS6KFhpd8RJp4buyoBfhZf
B+3JItVySJJnnhyDoMQc24qhXqGR0zYW9RITyhRGYI0aaQXQ7o45e5A2Mvk9pxEbQ0U7osRpS+wU
IvwUA9HwyIJPBfUKT0K1pubzz54XQBEEjaETXW9HvQYW7YqljvAvaifsWTvQasdBe3+RgZYgZIRZ
P895VcO2wK408BrxM/M6qPYctJxGUmzYECpL9AugaQRt4ykVlEf6rqfREkv6KC1uBiRQcUhm+/+B
DaMBgHqV88jjaAuRq3h9p1CxEMeIrojipxiPDp/SsllHRG+7wdusf3yXv4un0loIjh/XQVy5uo4p
cnhaW7vCWXB4saiX9I4q3Qdt16ta1fvcgcIwZIYS1sxnQ4uKy+2B03gJjUU2j1NAcdbhAZOiN1i3
W4IvCtjb9EYOPswi+Tmkpa6WlYHary+tfO3gkdOgclXt/jkFpydVNBFbutDnYltPEphIPPtWHE4i
bdsfqt0CV571kco+NIWcl0oDjOKHFTdNxFG3n1Qaicwi6epkCkkOfz0x/wVQfj4jHqegVFIKsOiq
MRBbIzTd7QKgXd0Fdqg1xV2WiAEnrye8Qoc8rW2msgdGjaoCm98FpQR9jHRkKPkZUiKFVEXQkMcp
RBXSNurZHqWx0m3RABOoGKbVjrEDFdGSNM+J821b15nYDdBlvRk5L5VhGI3wU7kF1uHzPAh5J1/M
IkkLwGdIztC7ETTkcQpUpYF3FU0EWUJYMZxHNKsdeAsfOFjyjDNLCjLx+GjYlfMJyHmpcAqqSFeM
8FP0eYKq75IBZn+q5nQXv0MyIVSWRCFAUJULz7RdGfENbSQpnqpRjDVXx+dCOAGOpoxor8IYcOq3
j1iEdwi4kXAM25DTHp2jAIhcrjyKgvk66LXvTBYJzyEZnyFBKST9CM0SKOIUmio5XjJM+Fi7ByEa
7M8mkYyToFaUxIpVo/iyPwc5L5UPWdEU3Ekj8VMMB3ibvpxFKuSQvC/g/WN67iRvM3RWcPQqGow2
SJgCimEgvQJoV2cDg0YmOtstDJkPRU67EsMosnVYsUTwJSyde/azSNkHoeor9NeeTmVZqr2+hExb
xLuxEvPm4BRpvhtA8nb0HajYYYBGA31syXClyIiSrs7292jkvFRqMLripoBNiUn266DXSWtJIq2M
c0Upxl/Al19fCnlPqTi8WHTVaIm2XNRTsNKNbdgtvLEoo4PA1JhQGlih8B4KyAkafRKMGtUTbMqC
BZ/nEdBZJEd5qavlLa8vhbyJik0bcbRK/dFPzlES216ELk2G3b71pHXgzjoZi8DxRNrPg9EIP/2v
4k34TGSRmBySWpYA3/j6UsibqGByUjsXB2liApxCDqxRnv7Y3fVzdg5BJ4hMM3554QaoiIPWVhj9
wCpXAzGMGg3MdVqiE/M2PZNFQnJI9Dv0AYKqXG5iw4ptQB1LrSWMurFoIOw6QGETXQC0OiARVbqY
spU2EW8X+O6lqAs5E9HBWQ55eu8gfhbepk9mkZgcUt/rS+pIFBWHZ1bGoXMIR1XFZNg1xH0IP10o
94fUHSjbRW5I+uo+2CFks+JEZa+mIiVjWdn/EIevqoU6pz51+GzOIuE5JFmy1gAXQeNDBjqPHnkB
R+0eVNFg/GV0W/Anqe/ewoOrdK7nhrbFywlDZmXpjmyblaYNC4ipFH5+Vi0M0kvX8iHR9CrqzSFp
m1CDkUbQaqXpioMUGiiFBzECJMQr9lG1HMpNPgM1evaXD70RMhdJh2f7Qx0P057ej3yYlWubDH5+
HoWnJd+mP+GmFHmy5Dv01kaaR1CFp1XsNnvknLc6ep5GS/yBOABhRwmEQ3oNdNBhL4+jE/1inWf2
Hml5ebvCwqiJn6KTb8sWfEoYrCaRuHfo10IeQUPeuZKXR/ax/u2Wjh1Y1ERzkT+Cc6+VUTUIi7HV
I9MRR/GqyC3crTA6gKzXCgyjEX66aaTl0eR66bNJJMFRK4kUEoKgIc+s7PGDQsXhXUUTgZjR5bCk
Fee0W3i2g8Hxum2zVxFuxyEn17tpIB1RhbiJYTTET2FeTeEcy418LYuk5JDOFYUtChkEDXlYpYqT
US8gVXD0qjESiGPo0YRz3jNQERwBv4N0m0hP3m6BhcyUH1HLezVUGMMfWMUdkwEsAn9EYSle+zDB
E08iOSa1IvoFvH76mgo4x6rZPhYl51z5ymNjKBmIFSRgqYRzTBKJHLyh7rlm7wAYckyHaJqpmPJh
llNRnVv3/xV0hKv5KPa3pk1InERSJdeqWlwLwRfw+GxglT3XNTEw2wwbFE1UQAQMcjoHMJGF75hb
10brxWtDTtBO/x6kjJyXCrF/EEdRwN+mx7NIXA4p/wAUmQG+ErGUhmlWk3tuw9HxoJ9A/dfoYnIm
f7HQBzEypereIrQc9pbfFvCsdDR9mJVrmxR+in4N+OzIIoU5JKUoCnkEVXhaRWkTsMagk4PWHI4W
I5IRZtCknT6Oyw602qvRfvpkkvsGzxbHAyuYaT6yEtscEAVy+KkAVvA2fTrusHfoFUAvI6gDp4oa
w4IEEcuWc85K4uhVoyUiazQESef2yi08an71Pr5zVDq/oPR5j1S7N7DAodiY6uPnx3JU0MrOItng
CSeRPoTFU1kpLZzE95sKj7rcihak27RQRtQcCQXKYEEOi1jEO5PzDDRarhO9ZbV4XdRYZe4o/0zv
Jopxpdi1Qw2GUaMqEeqw7uPHkkjBA1AxUK8aT8u5EvnD7EoZsWx5BR/JMGJsNuqSkMUg3gN+zk4h
94SL1yxuF2qAy3y/+weCpk3Kh6yA+OntQ1f4XM+gmETSK63fbzpwqqgxLNNiIEiwKHcNTdMabjsk
7J9G/QBqnOgHU/VNaTr4IbZl8zIXsej3jMAUR6wQIED8PMyCm0XqSCKZOSSzwCCowtMqDAsSB4IE
K6TQ4eE4aolJEBsgPJkA4Veb0bkVYn7tSfkJtZZPYeYHLo5Y14rHC/DTf51Jvg6a3rfYL4D2fb8Z
8s4VDDT5awYJKFYIk5G1m6LyWZY/zjvQtBuXxIRy63w6K2DIswfSA6OQoGU3w8GoIfusrrh0Knyb
sXM+1y6IJJJR815fAiDzcGQUjgYCQowJKOjk1BzeRHAmhKRyA+bJW3jUaK7zD7eKmC5eKqd5ap2N
FBgXrwVe2mxU8Q8rGInCqf8QPTNJJDuHJHjU10faIaxcBoYIWhbCg2BRcjYm5oITxIoWVGL07Geg
64ZCbDB6xpQlYOVTA8FRRPukKgzrLLgp7rQKcJDeIdELySLJ0cnh4jkk/B165BSDypm1byUMBmKz
qLNCO11EdIyOEQlaBOa1J5GMvvyFAlpcgF7ZyzG3lnJOzcOhFDOIG7GUCoef4WPQ62jpB6FoDqnx
+02tArHal8JAjLE46giUZIyC6AAhygBQP/M1pgtNrE6kQ+TXbsabgxMNAkoqYXhtsq4VDj+FpYEs
EphDWgsJBDUrEUsK+q4xJohYlDOPbjg22eymV9cgOyDfVe4ZaAU5waaMGzMCSymrGrGUio+f8qsk
CWNgFglNIjk5pG/mUuC/PtIqEGvmKjICm5Vx7bjpeJT2QEof6r2+i1kTBW0jKvr6OxbvLxHlf5hL
Q4JkMEJWI9a1oh90QNIwLMwiJZJIVg4p3oQiKSSzErEscR+yMgLKW/tCJRusjBCClFR/UDtxC4+a
hFxgjgDfh4cQLrK2pUiNh9E+nLQaRJ0qu66LxJhmcRQF9zFoJYk08gBU4WGgObPqBZ0eliBi5X2b
DrCWYE1SE1xJPfMZaOBzrQQtLZv6DXulFvOARexZoF6JnQsGCRp+gPh5rIWz5YEkkhi0NggCQW04
NVnElCcvaqCkCCIWJa/haJr24QOPet1JJKOndctQt1gi1A/sRThanhnv7QsmpBmG5hGIGPjpPQY9
4drVYD6JdK0qxdwDUIUX4agUNFwqqAEmiFiUc2/D0QJOYEBUpydl4d2TK565FiHN1AKjpf0JYcJU
NVneNtTajp4KBnz6zzujLJL9Dr0yAneozjkqEsmip7vhcptKCVYb9QTaJBT0UheApgA/MRN0k7hB
uJxyqzPUQQ3kcCJCNgJTG1NN/FT2of5z0MPGSktmPP+MH4AaVcmLcFQKRi4cpKoIsJ64CtzBQLiS
TVLARFAVQLmBEEstpAMcyI7KE8tsDs6C5C6kFLFmM5OlB5WFn6vegnDXkeaTSPoX8Obe0xquJjtV
TFZpwpPXL1DlBSiVcLQWro3wkdVW2n8CKGsIWhVL1LZG5E3nF+esB5d2LZYhIlQjMFW3ZotM4NU3
kqlAdxz1JFLwAHRhqAjqnaHFkoKGZc0iyBDjeHn35rqu0zycpPFv3YFGhiZmaXDm8Z4m1ubAmwkw
HYlIqxtFcGEtfRuoJDZ43GPQmIgHoOJHRJahmcxgWgYvAtFNoMQ4JkqTgdQxiDGbQm7dwovFu9T/
B6TFWCSJvOD5tZn31lIo4psfIjgVsb1Js/Dz8ygKV/hU0VPNIRmK54osBg9AnYNSgaaqYf4RIpCV
YlHOPo+jBaTAoCgyFuLfg7Lw7qmpe4aq0bK61SYItcBU8+4GoSCwtQqGn9KC8xj0EzqtQUZJJP4B
qD56q/KgywOpKoKIBQ5lSh0L9K1zH1ATgKbgPj8PxFao0D23GhMdECfetcVJbobM3Zh/WI7IY9AD
fRCqfYikFKM3QJ2DVrn0t/0vREV3K3g7HGu1gM11n4ImnLbuQKFBzy8vWg/lXnn3vWEng5AZvjh+
HtfjqWDBJ5lFwnJIa4FFUMl69MUyxYyA67jZaKrXnFIbFQF0brATllGbtl60Mmc9trL1GN/ymKiC
4Wf0GDSZRYpzSJkHoOdKMBU7t5d0W8YRwe1mPXry9FycSQJo9vLRyj0z51gJO4gUGmHUalAPwHq/
igDEz2MthFkkNIlk5pDWAo6g5snunOtSv2noZGwBCuOR2wkz+eG+uOa5bj7c6ly/9AUGu8HUAk+e
i0jZS8MGyWQZh+VoPQZdXYNNIuk5pNQDVVpZFQAAIABJREFU0HMlwNHSTA5Q0EvRX2O1ARytg0QL
VoV6L51tbiN6es+2BXS0oMiRBhaYMtGQDbn94apYVirBNvRU0ADvbzWXROp6AKpUpmey67oHXTIC
Td4XTHgAl3WKbVEkfNBrTDjF+wigdchL2CnuAYxm5WBu3kJpFR8/kcegzPkt6uUHoGalbc44ajDD
uGKT99MhmAzgR1EPgBrn7k+JLh2cRtR0iBY86yyYO8NCEEONzJ1ahJ+fRx0+G5JIKoTqR+2gVZQe
EaW40Z7rb4opVuT9aD9dlMGMFDjBtHMHSu0xNnU87c2BGA+s8m6HbRpoxvgpH4N+Nz4XxQCMHJKq
qJpcWMADUPPUcnNUvhw5XwgaTNCu0LoNOyKqAWjHUCdPl7y84OKLreThCLwG5R0LbAAJZBs5z6xo
G/rVJHiZ3h6umkRSiunbdwhHC1NLUoMvMI6Zd/97tiiPwJ+RHWjfnGUtbViEeBid3gcMx7TSVqmY
+PllxoLPZBLJ/xWR61E7KJWGmSkqliiwzzhuH90fyTMnmQNQbizrpoE3qe0ZoL5ADfB8MLVAqxI+
U1sgfLNlb9sw/DxvE0+2Skmkj3jvCSCoZO3YfDZsMvG2Lf7rqeWiT1dBAMHnllAKpRfVeMNKBZAb
sW3mMbPMOm8plcPVMgn3ypKJPOthOar70EPcyH/znVt6w8KK1O4D0HOla0kDFFN2S56RdlMqGHAa
DuEKkVj40pjmsanvWROM6Ux3SpsajBYIiKSUChG5SsXchgqYOw7zJ5m++VYS6boN/eauvdoHpVJG
rh6VNmJcsykadgfxjAkQCyez8P5I96035JoSVbID6Drh6nanjKh2VwF+frX5tqO8TG+fmZQ2PQC9
mHT/AuquikHbPQQ1ElZQC6N0I9K0ACg2QuY8es7ZsVLuILuA47sPOIalel6InIOpryPVcrQegyaT
SOoD0LVr7XCuNJy7rsIJrS5YPwmoae+JGhiP5aRuz7hu/xIJ8KVmo2n1oevCBozRlBtOYQOqjJTY
hqr70BVLI7I+RLI2oc7mkz5XMZZYaFDhYif3mK0ePBNkXLvRzSVEJQDdNXy8n1gz1ND2VLy1pIcD
lN+MAuxcwBP4qX3UqaOn/0NMxodIiQeg5ono5M4WxyZVkhRYpjycC56kBq9Zo1o/EztQf0T58XoR
um8pMuOOaZHqMx+BGbaPq6Y0wE/ZtfGLTB8h7/oh0lpwETQ4B0PaPrkGdYEp75bbo6g5lqeQx6EU
gHIjgbTnL53WA9grpgb5a1PQAv22bJKsAZnIqUfEctS/SvpTdW/lnSQS9QA0wFH3ArSwD4+NDI7V
YfuFtSpxVaABUMkN+vZnoPOEToy2keKN0pchtd9o2RJlYj4Yi7ujCOAzm0QSpeVoI2juHFG2YQS1
nRoQ1owRaPJURP2j9DqOtgmh5ktX3jXl0/1M2AdAMx3hhQ2ouacz8fNL7dSokEQi3186V+gzC9mo
XieYQvQTPR7vpwF6aFt/9F6S5bj8LurpsL4uROtu54riWHDttGxD0S4DlPG2ocsx+EWm9SeZNPmp
vBSA23cYL5W2K9tjZNhulzTxTgpuN/duRG8DIR8NB2/hP9zqJDldhaNIDBPyUCQccE1Ppbhlyo/H
xc+1DwX+vur6V0fuLzGthRhBXQK2oDGjiK7weJKaA65eC70+2gg9HQBaGV9mc9XYgCezC6JveN/j
N42HEEd2zJBsaPPm46fzGNSbilXOPgA9V4hzUdnczHkMt7lFBR/qceIs9Qb1GPag9BOSSFoQIDJN
MeRhajd4IOdHfQwSS91t6Ipyqceg0QPQePOZR81jjgELS8Q4bj488HisBfUDqAKg6D6ol6ZmV9s/
tdgq2+G2LDuxNBqVsQ2V+9BCEsl8id5BUN+4rrl/XumNpUudLj0VfHugA2RjNL8D/XCrLnei/3R3
/BKdOykgbFBHqDFSG1AEPz+PCgh+MwQJDVmEETS/BR3cfAKXvOJRjLgpPnaHNQg2rZQB0B+xtd5H
kH+mwhfuawQ6hQzG0quZ5bCi3Qqf1nNQwVdySKlfD+HONpSlGS5bqjR41G8gXyg1Hc96Btp6RVFj
WtCbFm7zuXS8dUCnYPjdItvQLwvUD9N/WA9A4c0nNOaVrTPSIBlrPMnNqPhAjebpYajPAGjnejY5
DY7tuW63W06EHogGAktcRrD7MfDzy9J5I4rNofoAdLVsIyiwW0MZa9FgxLLtMHqL5ZtinlambL3Y
BjsoO6CZE2H2oV0jcPdMKBuMcjDg3S2aed+o45nch5r/1kMfltJu6Padmh1eBrN7PQsTbIun0XZj
9HEc1x2oNcLcyD/casJCiTRb9XsTtzPWCNAqAZ2eMrUjFWr++SHb0NM+9GpMySFJje/idZz25hMa
68p2irFMV3OVAQcY8CzUSFhxeC09p5q0IJjO127hPzTFGUK6ALzynsUJ6tVyXncfBPcVR2VpMxVb
Q/5a+Pll6RqO1q28nUSCETQY51IUjN6NqWsIdgnEvyBDuwkI3So6NJGLhw1JpE3zr0ch2qyr+1IH
qZ1AB3R6rRv2WRB+rrfYX255tpxMIum2IQQVp8HIeERFGbFRU512yHrHfAeG4t4NUUc3z8rCbyJw
4u5ZmcP+42GVwp9q7GKpxvpYQ0TDQ58+tAGp5u1hOOwuGKUWNFfjoX6YVPvHaDeA6rN859wrUQYq
Mw054qxV74KQxugGNOCvd0P2Y9A/LP2nmJwHoBBoclvQrimkZFXttDUqAh4TtwF3kAoAiq2Xt83x
HR3X+3QtpG8FV1lX0WAoN8pXfYF2yrv01xec4AegdrfKqBxGU1FQ7RpOe9gQPQUEBrb4j7qF75ln
x0qmA6VNYMba9xT0E7d/U5CQQdGlshzRx6DRA1C1L2tEDmO0aDAEAe7Q6mEZR0fNVMxNWemiRwHo
XtpyIfwtEDCExKLZuktpQQQF007Hy1YzGhn8DTwyIp3BbysxSlwz2EEKHlanZ0HaXkoAaMd0jdym
VNa+D7OSt1kkNKbAuKwgRHEDquFn+E28PZhTi4UVbDuzW1AxglzRs+Mq3+RpnhYXUJnuyHbjqGRQ
3w70316GzLObOO20zWTDCoIYzUL8/NT+aqn/ML2aRgJfogewUz8FR1Tfku6+uDmb/9Fo5okA0N1z
ivf371xtbpHt2nvSbU/1GJO0nYvYfgY/TO/8FL1u2OpfHbJ+Zk4xtEi05S7rf8XXk5o9xPQ39gx0
3TR0GbowY6uaBjgWRW1wwS5CZ+vek9YKIcnYhsp9KJxE8r+BD/rXVSAFQsuj4hUd9DfG7WM1OEK9
ME9QG/xE9IqND+I/YRqGzMoQitZzzbsjpX/vSZv9cP+KbagCi+YANQhVDmbfbDEShVo1sB2A0U4n
nwpHHhgmCEFGZwf679wsNFMwMdYeiNUBO+/few6jqMDPrwZQFukjun3fhp079qGwkQZ/+w14g7yJ
OQGocOi69Rupa1g1O24wt3fctPeMRHw32q7l86DsQ49D/h7TVbgUtH2LNwgaOx1b5W4AIp0m5W+1
jjfZaaYk1J2bPeI90F3T29rP3KANy117T8cCgSbUBlThrNvQc0ttK2q9Ra8czD6hYlQnYBYk9MJu
97gHGHtAPz5tBtBnnHRA9w0y3XPTTWo0nhKKuvj53cK5j78kka5HBUH7sVOMx65P7EOLDcv0G7wK
tQPo7bOMDsC/30ONbjndDXtPR8SiqAFcCn6KbzqZJNLS2ETQlVHATmLSeBq4yJle0d6p8GH1xqh/
AHkAxcbCjPj26b2R0ndtTROcwpIQiwwUXaQ2fPr/z/jaXjWtMVSFm7A0fX1/Y6VTtzCbj3gG2kOj
+4N0181tPW36XrGKmmpXIXatiPeFg+eWp8yRyCIZOaSgH3uAttxWcuq6CLsijd4w2bZo/19C/38I
QJtJucrBhWf9wtXv3Xs6zVL4QDSSN9XKjvG4vuCp9en9jEjQBznifKOmS0JqtPpdxvH/y3QPgLb6
A9tg2Bus7RAije0yMnDTgxicQlHtNt4ea/QK6E7sjCic/L596LlNv9/RQ5hS74aNHuIBdNdAgX66
d2ntp2ZE9OQosNZ5DImY0V2yip/Gy6DamFZNBUFFZ9BAA6Zj2VYKW3FEutAQaHbHVEug91Cin//6
LXxiyrYvdR4sVOykgAJnGhtQRUWHz/Atemss9Ba0yKxuVq1m9zvaSJN/i9oAdGomtY3Gxsu21UEm
HLh6815kpm7jj/Vd+iWJdD2Wbt87mA61X55ckzxtj7Q9gd5nd9MO9N9bqHrPqMOad99si/CebUSB
buvPRfc2Pk4ihb+frBah2/W1ZUDEbGKXJ93zk6w9gXadEQ6g3Y8+aJP9/T+epm7eI7mtH6BOuAE9
FY29hptEWowpCOoU7WEGEtuQQz/2Rn6E7g71AfT6Q/+lZ6DgtDBzXfeLtIXK3SHuczig2A1PdYls
f/lft+X+0FY9ead34kdbUDEWS1IN0Ykb+WLDlIWBAPrx9F8C0Dztdwmqx567wwF80XdtHyZHeZfe
fos+sGWNYZGkzzpH2Uv1cA/871IMoP/oRH6YlaKtoVb9ew3y8V8wAPzW+MP4e7mNV/6lxzoQ2w41
HFMHl7B39zHt8I1Op/8vgIRO/9wO9L5Life8cYypJ3W1O9oPU9FF0fA23v2C09nZ2eMxFW0xxCTk
jfRI/3tMz1P0umf31W3iORQ8w6sagDQqj+NQzTQsGSiq3savppatqoedNajXFCGqTH3DlW/wv59D
90PPh7cD/YfmuulUCDPu7WVjt9lHamgPsFEEizwUFdvQvzXjLfoFdM1iYpRaE1LCGAWvbqqDpP/t
D5enk3MqL6E0ed4/aE5vGOpYl9Azutp9u9nEvqG+iAQiLr/GZCterKVv3+1RmuKIue1ybqDfwL3Y
PvXx7zwD/UHX+MdSAorsdsr+6Ps2XijHP8A0NMxf6qd/aI4fBKD/0Kw2kZgRZooiXXIbqik2bO0u
OKjexn+rXsUCO1s3yn4TiEnIXd3fuFjpSTPyIAD9ITRx9bK7JcYQ3kdp72b+cXq5YmF856xjZ8OY
fGqZQfq6JfpI05OQ6YdQN4B+uNUnEPlk6wdQYdwbJ0PFLlm8/rDy8hr9kkPSijO34SPz9O/52wPP
aBqQ/oEdaGVOHnjFn0SD03MCuo+VfRzXx6DKW/RL6+mB/pJF//XoSwPojzj58iBNA12nb9jpehCm
pldI2xWEwu/ll9t4MXDt9h2+c+cJaQtNZtOFgx0lSXOO/o8DxfN2oD9iwv+bBDxVBJDLuZeXt/En
jQ9FM9dl+9PRX9pDD7w0zwNQnB44nY+g1LzcNpnyXt4aikTQewe9pdF/gH70vPxkAP3ZlHabwZuq
YVcOtnoLfsofYzIAdu8OcnD27nOJX8rSLQD6z1zvu09E3ANHWncQend9Ziy38Ur2nTV7A2GX5EE+
9LPpnhN57A70n7muJN1/3j0j4BHskh4ykkhO8qhvIL6pW+n+EdxDzz3vxwKoR8+dToi44Q+dbCbD
DFqN29q5GxshhZy+c69A6cx0FXvdM4hd9DOH/yMB9Jf2EOrSfQC24OeH/CFloH0zlP7MwP6lPfR0
AP1wajt6RLp9ZIQZGZq6oZRZV22Fs6+noB+Xo1CJjRYH1jdpP8JFYvH++HvkxJ3p6QD6lzrm8QHX
4gFDuBA8ntw9s9uHZuPM0xJLQRO4b3Mo9Nn94Gv67CE84DQg+iEAytJPmf7/JgFXR/xPpBarv3Qb
/atX5x8F0BvoX/WQAhFTgm39EhvE3wuj0O+UtNEvgO6hFpf9QX5P3FQ7KffTa/S2Vrbfp9J/zVV+
Nv0C6GOowedTJm6MNQsBr5i5vroU2thFd033Lzo+h34B9Jc2URj2WnrIF2R7+qVfaqJfAP2lZmqC
LyUL32nyl36pg34BtJd+YxQk73W/095T/j9OoPZLJv1OVDP9Aug0/bpsnj6O3/mr0O/cjdMvgP7S
L/3SLyXpF0B/6Zd+6ZeS9Aug0/S+ewA/mN7H7/xV6HfuxukXQHvp12VBekO19/sd6sjaL5n0O1HN
9Augv9RMTTH6NspNJn/plzroF0B/aROF8PW2qqYg29Mv/VIT/QLoY6gh7FMmboQbpev3N/990Xp7
De6hu6b7d4F4Dv0C6B5q8fkfFDjWUEEE/IuZfyjQyvb7VPqvucrPpl8A7aJflxVETMn7+qeklR/F
f4V+p6SN/lEA/fWQJxNwdd5vr5q1+ku30b96dX4IgHZM/wMu4QOGcCF4PG/rT74PzcaZp2ThoyZw
3+ZQElvcH3tNnz2EB5wGRE8H0P2v+/F5ikde63VQ6UH6DYso+i18L/Xvd0C/3gVdVWKjxYH1TdqP
cJFYvD/+HjlxZ3o6gP7SjYR6L7hlA9SWhNF3DknKhkeyjumXfkmjHwmgP9ylueEPnezMrpoGsPWe
OUq5r680MffcbPZJ9p4VZ+kRnrKLfubwHwugP3M663T/efeMgEerC0KKe+AIXxsH4pu6le4fwT30
3PO+BUCfOx0k3X0i8sFhoHUH+QgmpF9PQM88K7GEm72BsEvyIB/62XTPiTx2B/rP01BWp2Rg2AeD
m+4FJd/fpCuAZptpcPbuc4lfytJPBtBft9EpNS+3TaZ4AGoO5SK+d4v5s6b44fSj5+V5APqjp/Pf
JjN3QyV1VJUrgqpJJImfjr2Jgf/S3fTAS5MG0Aeei6S5m6qu0zfsCHZT8lg1g2SYK/0H2KSlh6wk
kq5NdxkT0haazKYLBztKkuYc/R8HiuftQGmqXKEfcXXvo8HpkXfu1/Llp5TXl0HP5eld46+LuPRf
j75uAH271SfQbSmUMSqMe+NkOHfu5+IVNy85pPU2Xi3O4OnIPP17/vbAM5oGpH9gB7qZJpwkYVNv
4hjC+8iOhnuqaD0ABeJTfwzaMCafWmaQvm6JPtL0QAB8Oj0IQH+v3kqlJ6GRbuZx6KKYQCJ9C/r3
r9yEXppexTqKZkfDnTjEJOSu7m9crPSkGXkQgBbpSbP6r1Jp76anVy44+LXFVJJIywbVQNH+Yf5S
P/1Dc/wNoPEdVJ1+0MTdMNSxLnXogntv3dqdmO+VfWadfov++hhUjvZkze6ttlHWxBFz2+XcQL+B
e7F96sPegf6gOYuo6VQIM3J/lB+D1zJ6DljtofWWXh/sFRGvW88rdp7EEkahmei6ZQ8kjFHw6qY6
SPrf/nB5Ojmn8qqeZ8M0/UMzHZ0McKqxSqjhKOBzHWjCWLTqiKK4fbdNObfxarH1HCCqTH3DlW/w
v59D90PP+196BvqX7nORNmzqpKirgbv54Pb9XLwiaAChQm5ssNK38R337ay8kR7pf4/peYpiAP33
zvk4juW0btmFc63qlwF6Rpe+Y7XRR9+Cauj3pbTeuV8YV20PRaHhmDq4BJpZinb4RqfT/xdAQqd/
bgc6Qvv9g+oRfKSW7jK9I9WR5W1yzrD5PtOZDdqyxrBI0medo+ylergH/nfpvwSgoEswnrN7r8E0
rDyO+1LqQNVTXeLHX35w+36s4ut/i9f3t9CGdG2vSfDpokWgQnvDlIWBAPrxhAPowF3F4Ez/GxdR
nEXytNgndRlAUSX6hksDv9Ptu935eht/BeGoW3uYgcQ25FDXpfpHPXmz6bFnIpt2oP+GF5yp94w6
rGF3h/nndSRsxti5oOAJQrWuzk9Bbfx0eiWhFCJiNrM372DPT7L2BNp1Rm0AOjVgdZ+y73pv9axE
Z+13hziiQEwXO5ereda9gujyGPR6NO0G42ljOjRx8/50l6z1tCfQ++z+l56BavR0B1Y7bLo7HAYX
655dqnwh4kVDzSEdxsug0uo+FM1v6v1m9zvaSJN/i3gA3TVlQD+xytijD8agBR8jo8BapyAFv133
blfd2/cgh6RoKttQ0Rk00IDpWLaVwlYckS5E+l37KEDtlkDvoUQ/9+xA3YHSZ0E2GL4avtvmndpr
o8s8GCM7q+7E8Nt3/QGokHXexjcCpKofXh1K5rfp9zt6CFPq3bDRQ//1W3iblAsSXKMqSpHGmu4U
R+AFwM4VQb+bhEkk95vOnShaRVm4WSt08G58Ezj9BPqHANS5ytMOULHfd0ekwwUxLVA9wkoDO2WT
T/BTIPQ4P/t03qVX8NPsxx6gLbeVnLouAm8H+rxhsm3R/r+Ex3kAxWaBmat/aV5ZMs69dx86iKW6
vgWmV+mXlvYroPa/l1vaW2Cqo6uDqpG+WsdECd20Y/y71I8phdls34HefmXRAbzNCmN0y+mKTuq9
dmPpqehC2BXm1k0okUTSf6Dev4HHUB+vYyKQBi5yple0dyp8WL0x6h/A5lv422cQofsGme45vFck
YMMRRdhpFE0ElZtQNIm0tjTxszwduemhu4XpB3rnTto9yEc8A9110q39zA0avWvr3/XkcCXGToWz
Iui5pQai7k+KmPfvAyhKACxI6IXd7nEPMPaAfnw6AajcDUD0jPMQ1DWsmh13R9TecWXbM7TRUhgL
5mkQelx/i8l+l15H43AQ7VvzSjcAkU6T8rdax5vsNFMS6s7NnB3oQ0/6fgomBnHcvHN37UMx4Kjf
pCrBvG4+vxqET0AXrXgbym9Ay5PBUMvFbPO334A3yJuYVzxvg/NKmNY2Ge1DKFrPNXdb3bcPncBO
A0G/WxJJJOQ2fgOKhlqDe88BfyObT4UjDwwThCDj2DPQt1vNG7owY6uaBjgWRc1sWb+KXKRs2Icy
WgZ2SpUF61QINUH0+t8517YKfpr96yqQAqHlUfGKDvob4/axGhyhXpgnqA1+IiIAdPcOH+/v37n3
KMKoLmvah+rbMs+iAmbr5vOLf9aSr3+unOg23uxfHTK24Zzae+6GzqfQc+Ob6a9vB/rvXFmNBvee
jTZb96EYYBjNrL8CQXUIPQ7rX3oYjextqDKG6BQc0cDec7xhxuZ/NJp5SgBoR+8jiywT8a4CNoBp
HzPsj+1DkwgCY+eCcWITGj8AFWorDEP4GZ/BWhQjyBU9O67yTZ7maXEBlemObDeOSgY94j3Qe2jL
IgvHsm8AZaNW8U5BWPD71BBU2YQCeXjvJ0U0/PRHpDNaN5xen7EMdpCCh9Xp396u+vQoAO25EM1r
n9ImMMO6LqAfGyshQqkIbEGXitiEnk2ASSQli6T2ZY3IYYwWDYYgwB1aPSzj6KiZirkpK11UAFBs
0bztdO/oeHaXAsQhuMnZiJ3qrnA96m/Rm/VLA91mgJ/bUFRQ7RpOe9gQPQUEMMiiaPcOVB/rnYvK
26xEykxDjjhrVLwmDcfbKdmTwhdod4JQaVdPIV10rdt4emQLA4TDkPquzSYPoyLgMXEbcAfpUbfw
uwic5bvvFdLrJY8M4O2mt3Ez2dct4WVruJjEJlz7/3K6eQRMwQ2oJ+MbGzSwQeqgHxIu91ADgG6a
uLd2gJt1dV/qwNoQZTqu3Qp2weiZYd4o/60sF1BuQg/vAaimYL5Mr3VvjW49DUYG7lPT1yrlKrRD
1jvmOzAU2eiuUUc3GoCqd0MzhHQBuOY9ix/UK3IXCRjqgNESohoy5K8RHd+7x+tO0QJR+DGodoDG
uRQFozSXKCO2f1FB/AsytJuA0K2iQxO5ePhSFC0DuW7zRjrnRrP1xirZzlgjQKs0jOqyLFgg54cg
6AlCr8bEbzFpnyZ9F6/jtPETGuvKdoqxTFdzlQEHGPAs1EhYcXgtPaeatCCYzn+lzQ9SdkAzJ6JY
NTvqGoHr8gkYbduYumCqqOigJiEUfQBqt9N/2k4ZjLtzi3ekQtkzFMpgdq9nYYJt8TTabozex8E9
Aw3OgDrBydlwbM91u91yYgND7bFQhv/X2nx+WTpDITaH6rv0q2V7GxqMl2GsRYMRyzKb0RLdYvmm
mKeVKVvPysK3TjFqjLo3uW0ZTMdYHOAUGiD7IQRBNQhNJ5G23MYLBqXsdouy5yly+Sg+UKN5ethG
NAOgDzuFuwlaz8g9ENlXIpQTyOCyFRUdzMQmVHuLfu1J46PfxGuDcqc9xtLm+QbYUqXBo34D+UKp
6Zjfgb7dqsud6D/dHb8dzZ0U4Po7YRRGTSVwjc3n59GC0OPQskhCQxbhbSgMOIJ9F3TCSyxrOOPY
cC+bwxoEm1aqAGh+Da2Qtq1otNtivWtwbtjEG6VuBnJaCIKqEMrMmfvLyjF+BsZ1zf3zWgFNy1pP
86ng2wMdIBujZz0D1cmbXXjmCwsks0TPuQC3Jx2MbmjbqYPYulVcH4CuXalkPQZdOA5+5jegxxwD
FpaIcdx8eODxWAvqB1AHgFZOtNePNkx5B3QCoYs0jYcQI0LMkGwIf4zN5+dRhVDz+aclj7+J12KR
PheVzc2cx3CbW1TwoVvW/3wXY0tNy8kO7kDfbnWSnK7CUSSGGTTBnZwMBw5G07skPDy9zefax7c9
/afoV9PuD9NLs84g2DMpTpyn57Lh8SQ1B1y9Fnp9tBF6LgBqrOL799I9HaJWbD1tT0X0UD8NIBC4
qEwHvxQqoeoh6HKMHoD6KaTDfwzaeRuvtF3ZHiPDdrukiXfSyO0xw7TeDiuJDn00fElWbDInRpR3
zdJ0PxP28wFe3DLhf6/mjc3n927x1CifRAp/GnQdhxg1cWYhG9XjLmMD/USPx/tpgB7a1h+9n5BE
KlJqeYgamXLakVIxA0RhzM5EeDAWZ+d3OqoQGr9Fr6qxj0GB3abWqa6PYinA7nSAqBkj0OR7t57P
phSAchMDac/PtdYD2CumBi1sfvwiOmi/mZhPbUE1C8thOdr/ixNIIi0MUSJu4yWrugHN7DddGvGa
Fn/21O6J5pxSUvuTJnag/kjyk+ttb/YtdkpPLf4aW3DtZCIVgF48aK82l8uyHk9tlNyQ+uNLWhLp
ZGUtLEfNTZpgKT+5BsFLZ0C8W26PouZYnkIeh0oAumu+8X5izVBDgwPeWlcQpCznN0m5wPY2n8dy
FIVDwdC/TCeHZDwG5W/j7RPRqXEgIl1XAAAgAElEQVR3SqokKbBMeTgXPEkNXrNGtX5ufwYKuFWz
0bQ6pkaPGd7q+E254QB7Kvwvg6Cnwrn3QhJJySIR+EmfqxhLLDSocLGTeNvqwTNBxrXbBbI2tQBo
P7L0TIxjpdyBuX+B2iEBQAZMNcrxmDT1dbhajubvKGeTSBKRkceglyE3nLuuwgmtLlg/CSjruqTN
Ntu0laGdjkqTO1Dkuu8gtCcNDDgLruGuE+4E09QW1O7K33xqe0/tWac+JlWK/DQosA29mHT/Auqu
ikHbPQQ1ElZQC6N0I9JcAdRyeXAIDSMdPFnNdKY7ZgGf9qH+CGf/UggqMO44lJv39cmn/YNMZzPf
3LVX+6BU6PNfqUeljRjXbIqG3UE8YwLEwhdjc+Oa4pEbrG3mMbM16CxHq28S7pUlpa1+UZajugk9
1m3oie/sSIPHoMnbeJbguSxcxgbPSLspFQw4DYdwhUgszN3Cc6f6dquISXyGY5XCkompBVq94dqD
lMlwVbZx5ubz83iC0JMt8Pmnrq4+BtWP2sE8pQJwlWeeJahti/96arno01UQQPC5JZRCaeQZaPtK
deMImC6CdX5uUP2BjbVNIKj9ADSXROp6DNo8M0XFEgX2Gcfto/sjeeYkawDaMabJi+fYDhdQsBJ0
RJ9d05ZkYPOpNLiwIgSNIfSgk0gGfBL4edFIbkat4aKKuIGkO2GCvPuzgdZFD8Cfne+BMkNtnfZb
Lm9gmQ2OQiAjBugBKtu39bAcT+39X2J6W6QoqiYXlvsYlEBOSWOXI+cLQYMJ2hVat2FHRD0AagwZ
cQOuTYlQ09Tii7HOgmlvTu1YoEYKaLp7O3FU8Y58iV5tpf62nX508JM4/cLE7rn+pphiRd6P9tNF
GcxIgRNMt3+JlCE3atHWIS9hh/FdvIty3CG7HWJHpFUCBA0gtJZE0uGTwM/DrLTNGUcNZoowmrLP
hmAygB9FC4AGq3dElTlA2gI6fVeDWn2z0MlG33DkQj0Cm0/hN98FA0JhEOVepofw0zy56Znsuu5B
l4xAk/cFEx7AZZ1iWxQJX9yIciN/u9W5ft12hSUUUwucd3rBbd5CmSzjsBytHNLqGl4WKfxFJtkF
8Rj0OFdMVsNMDlDQS9FfYzUyzLLdcE1asCrUS97CZxc+WrnH9SoXmFqrgyb02dwVlxiOunAklmwN
6RQMPT6RMswh2Y9B18JydA4Bck5Q8zVmnC/h27DCeOR2wkx+uMVnoNNudY9NW0/bgUEtocuXC5yu
DZLZrwktIIKKwiEegMpOQ2p+DGovE5ZgZK4NotumYRT0/UzXBXouzmxNIkGDnZsrr4dyrzx0Tu9s
kmRG6YXFIOipYEBoMYnU9hj0vm1okoJhZddztONmo6lec0pt1ASgxqD9c8mfKRHFhe7tlRkbeYf7
Tmx5iA2RAprI3C9H/CV6OQI5JPZl+nVQ4cEGUym44ZpYVHS3grfDsVYL2Fz3KWjC6UGvMbmnlJ1l
skFmWs0QU1iB/dt2O0HkahU3CtbjyYL7Ej2dRIpeprdGFMewUnnQ5YFUFUHEAocypY4F+ta5D8gC
UDMSfMLgnpmAnslyrGgicDVucdNSPI5scRSxUgERVBQuRf35J5pEAl6mT+CneeLQVDXMP0IEmFIs
ytnZsOKpgBQYFEXGQvxbATSyPwH++xaUyQvOQCe9lxjcAZlGTdbSt4GgwvV6c0hrO/83RVz8VGXn
iskavAhEN4ES45gojSNncRBjNoX8ZQlqHTWc2+CFQE3n12bGm6W4bfbouIxwVNukrTKxeIcQyuaQ
ZAPwN0UMrFeY2IIiBYPrHQGmmCDv3lzXdZqHkzT+VZ+Bkn7fpaRGgre9QDuaW5sDATE1baFqNjNZ
emipgHTSVXFTflCEJ5FES7UDY5jWcDXZqWKyShOevH6Banb9RjtmjbaEayN8ZLWV9l1JJGMg/vgS
o6ebNOBodXEONi1Bu9IOhojSCEc9nLEQVBQuRTOJpJ+sLqs+Bo1PLwJTKRi5cJCqIsB64ipwBwPh
SjZJARNBD8rC+ydVPGNinSt2wbPOguQuhA5cU9VkqXAaIOipoEOo8QAUzCExj0Ex/IyWDJNFT3fD
5TaVEqw26gm0SSjopW4AxQCfmYKJ6UKX0/zqzENnQMldDRStEY7acCpwaDmCD0Dt8TvEPQZdB7iM
+8qVvAhMpaDhUkENMEHEopw7uR3lqYATGBDVyQTQdTMhNheNpNucX2hSfhApMN4bhEBpf8LbNlne
5jP0kxOunexeR1dOIl2fDMhSMErtYGOqySKmvG/RDNA8YlHybciJ9DCJRDjqCQBFhxXoTc+qF8ya
6wO2bJ5tKVJjnBiKLDoUA9UIR204DRFUFPznn/kkkvUcNHwMCviNhqkmSwomr6Ypplh536YDrCVY
k9QEV1LvZYuyJgntxNJCj7PvCoGOZ8oZvz8LumMRQwMYOo274nNBhVDt3t1/3qmKrOegwGNQOKKx
uSIuY23VUwYVCChv7QuVbLAyQghSUv1B7V5d0G/Yocz3IidrpbDIRv4X7FMwgaWUVY1YSsUAmRWQ
vvgSwwTeGVEB5ZA8axJIqceg9hwwczhzFRmBzcq4dtx0PEp7IKUP9Z6UhTeo62RBm6HHgBWGFQ7q
W1yLSQYDrhUEQaFN6LV88M8/rYbGffxaMI7u+VmViCUFfdcYE1AwGgLsOHLO2+ymdgDFIN+v+qYc
Vc3vgWbFzmEDzAaCFjORG7GUComgouA+AO1IIunwKQekH+ODVoFYWUjNipk1G6WOQEnGKIgOEKIM
QLINoOHuwqfp1QO4DvAVQ8eaX7sZpx4KOyzgtEoGQU8FFULXPPxRSSJZlvF9KHKKQeXMqq2U2dYU
izortNNFRMfoGJGgRWCeBNCG+cNbQYtLR79Ic00U9hYpML69L+4ugqjiH1YkFYVT/+Hzz0QSyXmb
XvDEj4oQ54lVLgNDBFMrocmi5GxMzAUniBUtqMTovTxhR+eU2UnkVI2h/gEu0dj+JOwNEbQEXlhR
e1kh8+9BLNcSwCTaGaeBJpG8LJIyjkW0noHagSKLKrWF0B4EJIhYee/1eBPBmRCSyg2Y92o79dYp
3GTZ64FbnHugs30zY4ImB50+4IijKEzkkGTTnsegyARYFR5MG52AYoGY6ijcE5XPsvye+Bbe2iow
Vd+UpoMfYls2LzPxG9HUFEcspXIdF4egSqE3h6Q0MbJIzpgg/LQnQ6swLEjciZkghQ4Px1FLTILY
AOHJBCQ/8zUm90SJuadtYxrgWt7v952gqVh04BREUAmlOoQaOSQonogsknIfz/04E7rAKGoMy7QY
CBIsyl1D07SG2w4J+6eRA6DW/gI8E0yNmZbWKSRhOFyKI0NF98cE2IbFxlGHhyGoxCnud5gySSTo
N5nsgXrVeFrOFWz1ZC5Y/xKsyUPfjg1NhGajLglZDOIpAMpiCjd5vrYunV98UB/KLB6dmxQ+rsCh
wNC5Is1yPCGUDqELhhoTyiSRLFT2XmfKf5WkKVKXW9GCdNNuZPeoUXMkFCiDBTksYhHvTC9fnBkO
xm4jwOfhZTLlPXmffVJgaXCKIKg8CrS6QOh6896YRLK6kUAaHOODg6mKGsOCBBHLlnPOmkPOzois
0RAkndu/dqwlotew6nIRYdzOaZ7ym8gbKXnASjRXAt9BgQqCKoC1Ytt68RuSSHYWSRmXf4RD3p7N
9MUuOkZeHnYABEwxIhlhBk3a6X2MJJE6Rj+CnKyx0IvAgXRCp8LCtjlopYKgokA8AK0mka7WlWLj
V52F+Y1YSsM0q8k92RBJ03jQT+AqA6Bk/4Z6YbEYXFjacBSsmPJhllNRtxE6fqxIukLRyYgFoWNJ
JKNHMTTqq6QjlFWRs+e6JgZmm9mGnHnTGJj0AJdOHoCKsAj4HaTbhHYm8AE2wo2hCp1Rb+k9yBur
uGNaIfPvYXUFZRNq55DsD5HwJJJnUiuaI17PbOlFqYDTuvNKg3LOla88NoaSgVhBApZKOKcBKDvI
QL9yzm5b4mrk2oU4mjm1akAl9iVhJcQHqyqd7Ltwgq+z9ev5FXJISuPrjbzCFgXjqFfRqcMq1CXE
WBP+WNt2lNuNoUcTzr0ihWoHptivVjriKL6KHI5mKqa8tUkOOlEEFYVL6dRPRw5Ja2R10vZVZxeM
7vGDQsXhXUUTgZjR5bCkFedeDQbdDlptdI+U6iHsvBU6I3k+SlnoBBFUKZz76MohGapmFkkbjSgk
8DMDowPICspDsLTtwKImmov8EZyb/JTTGHBm9UDOHXB3eOFEXShcuOdiAuvsbVaubSoIKqFUKS0Q
6ueQ1GnNZJGgt+kL+GlPpVax2+yRc97q6HkaLfEH4gCEHbOg7wKo4WBy8+FT5QTctsT1yDV3NLg1
nTJQ3a5wlQKCmlAKQaiTQyKSSMJKCJ/RAsDjZ9OlaLriIKHQmgsPYgRIiFfso2o5lFMBlB117iyx
5aOxQ8hmZRHuwrQeuY2WNDSsmGL62Hefp9IF0QSGlkJEsXeuaKNZCyuOpvFTm1uqUpXn+3R6UEWD
8ZfRbcGfpP4rVuG7MOxQ5nVlwkS8V+C7lyJn6c5XMOUMdDo8vXcdVUz0ybxDjz/9DFp1vk1P+A06
wU3XM2HZNgNDKxs4ybBriPsQfrpQ7g894OfsoBNyleirBTfYjaOJlvb+h4xsfTZABD0VdAh1MfQo
J5GcHrzHoCB+HiqXm9iwYhtQx1Jr2YGcc2HXAQqb6HUccwMJlgJIWp9mlJzrGovA8YxvLMJKDJ06
ZJpIIwqnLsgckvchkiuEskgKxne8zoRO8kQFk5PauThIExPgFHJgjfL0xy62Aw38DG3eocXr5ohc
lLnlP29gI3SCCKoVEAglc0jVLJK3/WzAz/thVCPOAOnyvdQf/eQcJbFNB1DSCKrfsJ4gI8L9PbY2
g6ObK0noXPFjZUsojSFUYGgtNPEskjbIlWOdKHsIeU+pOLxYdNVoibZc1FOw0o1tVwDtWmgGFizX
JHGFcs0djUfjaA06jUXZe31JG81EDkltx71Nb52FddbsIeTdWIl5uWBACGm+G0DydmaTSMag/SWD
WVAGJhr3II63Cy1h6FQJQlC5KktY4p5/EjkkSzn5Nj16jum5k7w7MZXkXUWD0QYJU0AxMegTvXZ0
MmAfsQjvEnAj4RjuwVFUARCRCCoKJoRGGHp8IqMJpEwWKYJPeQL+EZolUMQpNFVyvGSY8LF2D0I0
2Ad3oKCb5caAVZGe6JWSvdKPw1FOQRXpiiCCKoVz6Wy0mEPKZZHAt+lB/DxULjzTduVxyOkQj454
AyjmIZwAR1NGNANAs8AY6FdWhcTE13pybD4BR1MK+CFEULsAv0OfffzpWci9TQ/iJz+LEY9ToCoN
vKtoIsgSworhPKJZ7RYA7Zoj7iwyKwx/UZMrZ25/wfn1o6ATRFCtoEOoh6FHPhOvNCy+Td+On/fA
KGkb9WyPkrEVtGiACVQM02pn+Euk1kWL7ha4nuyVj9dpm1fH0T3QueLFyrah9Fw6DaU3h2Spk2/T
K7AZnXjtEPI4BaWSUoBFV42B2Bqh6W5fZDfGGo0289nQmuJye6YrvvKxyOalcLQBOj1yEXQFFAVx
vsEIgdBcDslV4N+mN9cD6nUmj/bBaErB6UkVTcSWLvS5EEqwwETi2bfi/yK9j+uxqBeZ4dtWLDZ0
b4pC3t+KxqtbcNqqB6N5dDwVDlk6F4/3cVy6WutXEUdrAwtIsH2of9TDN7fkhiip8eoWHF4s6iUG
RysWhTjqAgZU6xa+OoXgeWSqWA9nnewhNhmKUt5M7jBRHnLG/u7L3Xtqw/fS8A05JNVG7m16Ej+T
vtTAUyooj/RdT6MllvRRWtwMSKDikMz2K4B2rz2cPUjbVSKuGtxTbqlu22ugjWrQSSKoVlBKAs7E
+AsgGj8Ipd+mH8NPEsjCtvVGsGhXLHWEf1E7YW/Xz9kZJ+KfH7PIdM+U2QO5fu+LElWkKpYQVEKp
hCEuhcTmkMwGZBop/io+g5+4ii2acRqnbSzqJSaUKYzAGjXSJ4CGHUZbEhFXvhmfTQUTIKxtGADL
4Yi6w8Th4duNFIJKtNEgKfgMST31KIfkqqxs42Mkd9TyFK9HFz+FWWWMdjuSZ/fY4JcqjURSIc5z
wNmEYieFcAeahfIckDLKLrdnBcoiU9SqASbDARJeDSKoiTPQO/RLl/R3SMy3SPbHSNqQ14K1DzWq
Kpe9MG08Z0yaSCMCAWFyjTFc335SnG/3NgG0Z95YO9Ay0zDfFYq9klz+K7xYhAS2UV2OCsJIFII/
Q6o8/fTNAB8jKdhvv86ETRZ8uI41FHXzSNEIFeK6hCdpsu0IAJ2aRMNuwzKDmKC9HHYp0i37eLGo
jKDmUSsYEOpiaDERr7VGPkaqpJHK+Fm6snVeLPIUOyOnEs+R8j4Ue9miwIYZXOwQNDa07Lg9ti6q
sG+QogrsskODGiQQNIDQiRyS2QTMImmDXwugm/dOvymK1UMeLBqMHFfH50KIwIJQEsPOinEWnjUO
6leujzvjvOFkw9z63rBTYGPQxcpFGB5F4WTXgE0vvXNhAzjqaIFZJG289OugiaklV79ZF4pFHs1E
Wj8iCHEzhh3HcbxMnZ4ViAXSzLqDjBT2aULTaVYRdVgCDkkE1QpK6VpWPuW0ZtRJIQWtFoZRaXkd
lJnRJJqGomHIHA8YMJozgICKYXJAUu5AuzrdYNc1mV4mYZuO6ZJ35yyloxdFUAmlEniId+ibckia
ITOL1PQ6KDSR02hKqsPOOhgwrs5AtzvsJl6kj7yLH4TCLiw8xOyxbg0YITXivUUsAkbqtgMRVOKL
BkLU889aDklvTz8HFSx5wvpRrzZdFE7k2I17jqklTriwTQEACUFJBLvQN4CGrVHz4HBSQOq2Qa4P
fdVZp+nYXMQiWEOfThJBTWRBUkgBhmZRFMwihfCpnNMqyuDn4Qk7rm9OxDpuMU4QVcisUQ3Yq5hF
MEQB2IFmcJloT5ln4JVfIVlKOmdOxGImEdcRgiqYInEHfYfe/pAIAlJHEX0Oyr0OyuHnoXKJK5PS
QEWw+SYi4NSoQvaT4qr54ziO42VrdU9ssA74E8kMBtGlHRz2tkY4bcFM3SSIoCaaKNBzGa/7/DOf
Q2KySBaIa0hqF8jPkpouz+VMSA2Nkt7bGRelGMbQIECYNHkQqexA4e4N19pBelfIStczSNh7+uOD
Pg8KQZejvLYKcAJZ+HUb6oIoS+qDUKvmD1vi56KS+SwJoDE0LbkmT4ixROz2Uhq3NMWXL3Y7LuoF
ywhURbjbLk3SdRtNuc1cbnwUhZOlU+mCVee+FMBsAFHNhNOvul2WQMq+DrpYcrn9AHcPVgLk9gdx
oehHgaYJt64KSBa+7OS+nRSQJrhXYeuB7Y7U8BSJQbrcGCOUglLynn+aKaSMhxkNnSQ8nUZi5wiZ
75pTNXpTzyCJ7vpwFGR34ZZLL0dvaqXKrSOIsssdXHg3xUGTX9cRVLIcCF0xVD1dAkfdLJID2Gga
qYqfh8odgKaau20LB10IcX37JRv17v4ItB0oPJAw5LDmPhtajMpXpXexDS2zQ8iSboxFUFHQYMeE
UPH8E0whAXzXqjkI9HXQJH7OX0DWiWrdVP2yELFQ7LNwk0QrQ/EVKXhDaNKv+FgCObc5eCNYVh28
hqBaIYTQBQCX8QDbzRgzHXN2/1P38UZV5dYQasB5skQYS0Qq1nkkbkarRQH6Eqk4y6gdavlJrGv8
abQ4G2skG2tugCQR1IZStXQ5u+j5Z/bhZ2zFfQ6qFZWSOQUcfo5cTJtucVi/vS70uZnQR8UwYXZe
nmbXUGp268jp2qVddc7TJ3cFOQRVcORbpJTMnLeQffPSKAplkcz3AtwTgV+nz+BnlsY9ruj1bsMM
t4QTbeTDo7oDDYcCrsrJtYKaicT1mZrpoL85j9dNuty1Ko4mgpwsaGhkI5ZW/+JSOOqmkew68T7T
Wgj3oW7V5RaBraN1E7n9MVzfPmmjCassBe7HRNJ7Bb89xoaWp/x1yrp1zWknevWjWK/KS+QgqFKy
36FXMM263u5Dz/CRqJCYSXj6OajJ8Ce1CTgf62hIhxkuFOkRu4pVIP3v0vbDMmoJkmTYw9i6FsO9
CrtPzuwBOEx0hFW/j4fJ+CycRvvNOxcv5bV2/HFS94RZ71f032bt7RfzOApVWeTTaQBiq4NwdTLc
HHB2kWnvKngRuv3UMRf+fosQeqrjG4Rir257rArgxalw2sKdejfKx9BnSLYhJ410KSvcPfh5eMIn
eBTfayLyKoGespGgABz1W/hwUFbwRcfAnM+mqlcuskgOrtitXswD6cI1ETSE1CiF5D3/NFNI+Qk3
mnsd62XqPt6aJsPXe4FzDmkRInpA4DRVDdiruAmhTAXyB5WrVyUYbgpIKVMXIXE2T3JjYEi6Thjy
NlZIXDmXDIRS0vDafCRgFP4YyR5PkEbCVxVsjlXuvU7S5LcEnEKGgjYBuwuhULoCqNl66hLnVhdX
2V3zCFhtde4NewtdB0TQECUUaEmlkOzPkIDX5oE0kseopJGctcWQe1XiCm5AQId408gZGlVoKCC7
TCgUvihtWyE6gmZ8NlVFBpB2tnknT1vhENS8bhJKJahAEMp/hvS2KGokONeqWtY2ovJUw3mi8PNQ
uds8pQlwCTj1uZmwZoEljU8RNBq38Hm7gX7QrgNIES4Bq1U/i4nvwR2aG6y4Rwns0ADm3Av1/LP2
8DO2BT8HVbjyPOWkgMdrVb9C1eveSmnfd3UacDRgr+IsPtEKC4BGeNt20QJ7lW6Ya3gVVlfhbQd3
FAY3jaAacMYppOnPkDwLieegyft47OhfGE94l0d5RMApxKV6tdibcEkKEv+Vc4QwIM2sWQzmeDrz
q39+FAgXP9pQqpdsCI0x9Mhm4r00klPH00gKbBbxk7h2j/QyoKEu9LmZoN44MwH9BVAYcE0F9sj1
146cbjfE1dm+N3B1ehBUQYxvkVJyn38uA7SwEnrOGeppD0KtWpRGiteTEn4eKpe45pNOBozC1clw
W4CzGY0AYPyfJY8+Sqp+vxO0r5jXv1xyP1Uivlga+X4p/a2SLjSq6NEr8F8hcZ8hpbcWSkMnJt9B
UaBlGj/9wVQRs4n4LojxL9wUgcBZNR/ipaD1Fp63UKRg6NQyBV2w/P7Oo8kdgNsQ4eJHc7dlbD1P
g7yUL6c1+RmSba6URnJgM7nJYa5Xk2804S/SEBF2VFf2NCrFgvAZKDxEckEm++tDTp1bBjKcql7u
Lu9FBFVwQmKJijnX8p4Ukm1l/HX6Hvw8XK4qbEJFwDbRUBf63BJwBtSERYjiJ4Cm555uCbbrANIE
9ypsQtdeM7pqN4JqBaV0UwrJbZpLI2mnGRdq+Ilc2Ge5oqua4bYA5zAWOS3tHahpM+ft8VBqaw7R
FlnnXXvpZT/t0rqqG35rNTw6UCpZQykkVUgpl9NI7mmbkxWuS15Vv55pT2xySKSFLoS4GAWgMIVF
uEAmkeo/aRemKLDmPjtTzSeXkKGnf6yOaAhxo5+rizJH3wz583XnvJGeNnpfMkRvLoVUCwil9duu
vdWyBqSCJQEVOzIbT527EWORFokTSVUDtqUWLGexgVjwjt8DDXtlhwfqY3OYuQ6I37nCHW7sqvoB
qVdjtxL7KxVElB3asd68X8Y6nkKyTDrfcoav0yunPvUclABOnUYw1m3BCDcA5xACQQa/AFS6X7l7
kAJ7HUCKcBNCVae6yEOB5Oqu1fBoIoOCHjqYuhA6mEKyLRXTSN5UrDrwCuVV9SuLOEOXp7nD4oU+
twScmxHIBUfiSyR6uMnzzK1CCZNlPG12XSJ2DK5ejSPbQVC3RKWQlJMupJC85oKbTyM5+GkxgiO0
BiLAeQA6aQ91dXQhxMWoBwLSOMs0eDngipoLVlxazxdTS1kGhQihqtPl5gXIzCOoKJz6V3HTSyGt
Q/dTSKpMpyCN5DKINJKyjtx5H394wmZwrXvmUa8G7FXcjD8IFL5PO1B+xaisMZodbvoarkx+tU3D
akK14pjh0cQDBTwyr9Bfh+U+/Xx/U0qum595nd6ewHCtIqoud4vvueM5CG4ncMIACFIJ+ZxbeNtN
6Q45GgTSPLfZCRMhsnChahzPAILqJQOJWlJIb42ANgrvWjUq/vbTw0+LERyxqspFhIQH6lRHTJ3b
ApxTlAK8l5TmgZON3sBgJ5C6Snk8HdLRha5uHUHtAv388zrA0RSSbS2VRvJOeew+/nClCVSd0XFb
Qrq+UhI4m1GHAcA3lkQKDVZDIbDjuxvXhdsWcVXXfJcfU1wfUHEE9QrnEgShAkOV0+5A0aE0knbm
QIGMXQNWE1xVyHhaV9dG1afAgw3tYdQBOzgBqIavBcsFApechmqem3dS1wADmX41PiJQqpTOg6un
kPgMUtgumUZSF4mR56DU5SS43c54lLkNsYmKy4TD3ZlB/aByeApJT0LN+cNpQM47Fv1EvKzVJILa
DDwJ35VCAh91hmqFNJJ6plIaz14OP2XnmrLL5YXtLqlzU8CZBIki5rBA/b9DfmcYM0SfTT8OmvuR
0L7POqH+8p+Ajn2muYyX/3rzWAvqB53A739GPwZ6vA/v10AP1n+jll6svvWyD6RxgYxgH1YTcMoI
XbP6eHUuteC7hou7Kph4IFUZuX/p0XUSSfsYu7BUJjypTUi5orGZgWMYKZxLavHmFJJtsZZGGsZP
49K51YS3diNmIar8NhH7JqyJ6AygGORSo0muymC/lTllHKHut8QeweBi8QYfEShVSud+H5BCcuzk
0kjqYjH5HFTYcasEt9tn9SZGlaJccA8hDY2CL6hJSF3LQ3CaGLtSdZW2omyw5BuACvuPg6CSpeKK
A6FkCkmTADSQRlLPWErjWSSPPqxm4HSoia7bUQXZ3UhTaPE+DvQW3uyt63RI+8EyXqgybjPlyFAU
rcp5BBUFFTIQCDVB6lNuXe/ZrkIAACAASURBVE7wXXlIuyeN5KKmnLpVh74aKrvgsd2OC1koVTk8
baMqtF1+DxTPHsFpJTqvgZnzh1Opukr1f1dXSBUVf++T+c9x2X8hV00hVaNFa++F71svq0UFSM1C
8piqJrh5Q7qFjurKDlyhuFLZBmPBlUEmkcJuukIAnD+fnalmHAexMLeS00dz3xRtPU99G2U0hSSY
dWpLI51BU5sQs5B+Djrmtgk49bmNbgt1L8Tj+MJ28FIbxYxsfywFJzwApK7SNDdT5ePUQVDJUvHk
eh58CmnTp5weml8rKl8pDT4HLfnCHu7hcjuBswswI8KBzWC8ECWm41WhuBqD/XYAaV2pz0Oxah1B
RUGFChVCnY0nmEIqZZACE0waKTzBPc9BGzxiM0QyQwsaBexV3IwqBSBl3wMNO+paMgJ7mNcZ7AKk
jcFrplpHUK9wLrEQSqSQqAQS1ChMI3Hwqc0IUCgeU1WEe7jcvljgQpEL8zSF9uiOXnqzmEH3mF4c
IPUOIIWUCi6b8bvA36xZMfUQKFVK5w7OxSsQXUahwJuLk+8T5RSsLtyBGY8lNCRteQ4qGvh6meq0
Ax8JJVIrCQo03uKwZjGiHWgeONmTISdhAEj7vIdyYb+NrhzGm6nnIKhkqTjivLvUlUJ6awS10phL
3RLi208HPy2GMreunnHZXWkDuvqDTFjKaVniKqaEirjgkxYABbw0EsDoD1Jgd+C6TS/zWBsw0ix2
jKCioEJECKFhCukQ1JtCciwyaaTgRHueg/Zc3Ypb1ZUOhFsDzpuwJIN/1g5UWCr0uShGR9IMxob6
GHdMyk8NQEVDLxR4hXNJY/oppGWEYykk14xkY2mk6NSZecQviiumfDvjaxnHN4jy7YAd9VFEEgbU
TM0X2SXReXYZIdunVsD+aqUNFicgctYQVCnpiEJl4Y00/FGCUa9pOALkhVDtvJHnoPwlSV3xDFIu
1d1BshIY2uNIUoC/dQcaQ2/nKCgKpuEHA+laNQDVZwPh6kCpZOm46UBojKG263APOn1VNQnvDK79
OWgaP7nrXqg+FDizQMkSDmEx438r40vz/s86a78O2vh5Z+UHR1OfZS6Wkz/7OfP7n+Z3nEvteOtf
ck79GqjZWqCpWXsHRQ1I4wKLn2Z7lZ2q+pbnqhyeWq3ZY2g4FtimXqFGvvuuhQScfuzqUFf6YQ5H
e47J8Apq6VI0ygeeQpLcMmXSSOap3ImfnC/sqnYMY2XnxDSF9irgJ5JIMfj2jSM5U7n1rAJZ87hq
uKnPbkZQt2RjTSaF1JRB8o3FaaR4VfAnZRI/OY/oq2K+XgJOg90LA3HDWABgn/0eaCNwBmtsqBd0
EFzUjmtN+VqmunYUsFsRVLLOpRhC0ymkMow6BnrSSOqMSOkcfpr2VHZH1e/oYLS4c7FsV9Ej7CAW
2Kber1gnP4BKbBTsTlzsbdUm5JSBKyUulmrQgUIol0KC80dwkziNBMGnuoz4s7Zyyvj5s7xUrwbs
wHaZQrsl6JNJpML/mHv2r4Qa7NuSTr3/IE4cj9WukAS//xmmjZafAoVSSMSPgX7YIoc0VYGmZs0o
a6uJAqRmYRhHb4PVEnCS26HkVMHDUQQx4zhedn9Ic1BQXVTASSot2wZ7n9sZ0ZB2IJOhFdySlV+J
36A/ViL2msxXnI5t6n16lX/7c1ASMLfhaKCFsS1xN2aYCrHAw8gXoOU0ZwXNBF4Tnz3odyWHjzyq
FUH1UlSUaARgKIWiIDmfI7kM61zg56Ct+EnqYex59za0QPZurMAFkC0liRQDcH4sTUswah5jG0ao
aspbQeT0x1dEUA1LNaC4FK+wE2KoeiJNiXjbjJaEd4Yav8WkoWYHfmrdauySdw/AKtZTwLaMDSEE
A17Q9XkxAMwD59QyQ14Nn73BA7FGpDiOzC+GXdDAwEANC0JlCulYKMwgGVKPwjySZDlVKg3vzJ1S
WJVhQclL9jm1oRWwA2NlCu3yAlX1damxlvKDaF5YAjVuUSxplUyTyInHpluQLODm3d6+CeEny7mG
6PNOSE+TBln4GD4VJKWeg+bxM+czKa1O01woRmpFfCjhpQuM2qeciTx8mDYH8+ohgXn6+/PzXOq9
mILv+teb5y82T9l2M/HOZeH/OF74pkYgTzReuW+79tbLCnxqpUn8xHC0ZatANQLZoLh09RE7pkKC
cRzsv/TATy89IcmGuXWv5CKlBZncXoRRJQSmRrD1PKQ0+wa98xGSZJcJ/Rzpnvfp2/Bz0uv0aqCF
sUGxRRvhhOzipV123BbfBHSMtD6m1uIjmNYscpqBaDPwN+hpCJWPP70MkiZIkZdHEhy7ytzIQ+/T
J67SA3E0Ba+BkUhtCBWaMe59GDvQuBd8HOm1AyRwCm/wsD3ICcSmKGhrpla6FG0IvZwR8RFSPoGE
WIg/R3Ky8MYceCUJpHEeqe/qD7A7bVriXahgKlQYx3FEt/ANwBlSk+9EZrHh/UDkjKPTLbglG1UW
JDquVekmDlCSr8sjLeg0EnKi/lQxhXb8vA9HDW2wlaXWhAHh8EoI94f+dxxaWiFPcBqpozPCLveT
m6s4ZSSZIYqI//lPLIOkf7x5+XbTyiAtteN4Gykk9xR7tiOqlSAs3kYlKiqlDvyM6EYczRmxxD1X
nLDb0eH18uk70AQu18fcvOyQ1/IGdlYNFlS2nnI8V4VDbOHW09iZQXKtZz9HMkDTn8K4wF/HXn/a
wAbFkXoRARhQSgNckIWfAM6uZYi08yBABYcQNkshqGTpJbXIPf60v69sR1HLZuVzJH0yvBKUkDcZ
lqDoPhvYoNhSG0eATiBd6HVRsrUbgXOakv5miLFWOeRkV1wcMJX8hRPbIW4W3qD3M0iqiCM/jxRw
Ot6nh1apDQmlnNhnr2KDnYP0MZoAUin5UzB2oIlTDRdSs0X3EewOE/e0akbOOApl5PpxrgHDpWii
pp+c+athXRo6fwQ31fNIq4olzN3IywJwfSzGLTgaiHOtIrWxuDcVOuDtL0Uv0sd946PbtRCBE7wF
GsGhDSKoV9BLatF//nlcq/LsA5R8f5OjheqpYjwLX76RJwrt+HmnNwfi3XFvKlQYK/35lBPIwz/x
d5aLv78MZscNcWA8MBoNOf0RJ1ZQ/vMm+T841yy8+JAz+SVnMcz01lFcvK3KOyhWgZTGz5XIdltg
NriCw0uF7CgWELi5XjFrBwpYCFVDwdSSVLyimDjpVbnF3LFjMrSCZKmlS9Eoy33nOuJtGSTfcsvn
SDB+NifkV0pu+mq+y40B7KSN4DmLBQTqfVL4LXzitPkzsRSbF6UeMEv6MKgGA6UUAFCqBrpSsrCD
y8L7GSRVkqNCHsl7EKrywdeYPNhMXFvwuNCTHD5SL8a27AAXJGx90WtRJDAYZ8DraVdQ9fpZUkyq
1RHUk3gRfi5FxaUCZeGtWW9IxLs2FEnuQWjvC02xJI2fMx6KicnO0gTbNRUSDCn5LJg70FYkXQX0
atK8TCV9ocdK+ZyASBQFbYkMYOFShCFU23W6OIllj9g2ehJeDNWsEWl4FT+FGpOQtwRN0bDV+9Fm
ZdyFAZVgAJLP3wMlske2pD+NlKWmNBNoley8nCPLJY78vFFjBkkyjr8uuOFLTstOFC1vqxIiqVdi
Ciaj+7hQD55G1qpXl7ZXAFJGInagGWt8k/L6UrxOs75VdZ7QTryb8TZDesxrTC+DdEUcYB/6h9sF
kzqheaTM50jRZHkT3YmfKO3F02LgpU82bNAJW4rETiIRVnBMhxG1unA1e88afzPWzXnsQVA1xAMw
tSEUycJbIDoAo6ZZ9UmoUwVOXpspLo+UwE9hddb5pl0bJNoeLsBRyxv9K9ZRPINm9K0PzVeKbN6k
Dp9ED4J6sa3jZhJC5fX3M0i6jKQgjxSxePgMZlHqteBn2Zd0mlVHm6dxNgSWAmhBmCh3oExznLEK
YIXs1Bb9q1l9EEEBKHVZ5M37ereLYKh9sSuZ+KgxkkdyzqZ8I++w4ovXjp/P8HuUaDuwAsGQEkUF
+Z9IOf8GbdBTPHTNHoKYZrcxTioSlxWA6WUItSx8+OwT+0KT0FTl2Sy8sa5os+bP+FoAJJbgmXhq
UXvM8niZIMjG/5hfU058znl/Yn74O9Bt7w3Eqfev3Pgpzy6vLv4Dyt6/4KSz8H/cEfCxUCNnINpw
vJFKVFRKqYLJSAKYoCKSDW1iQvthg1iQYDhW39oOVF7XzmGFp5pehTavlk2jgvcawL7FLbglCxrO
o3N2oWqaW5uomQRSZF2y3Qeh2RdC/Y0oUQjxUwyjKRZuCqV0yOMKFdx0AfFFAW4swcdFT8bUsrYZ
KcPuhhA0KqlFF1kcDFI1TvxuGHVMqk9CHQ3kjSY0jzSFn2O+p1OzuXQ/YQNTgWAAkrPK61LL2+SB
0xSk16Oh6zvlreGwmhDUx1KNCUIoloW3ZruSP0KtYHkks/awF0JFB9s90qfxbni8NAUljDuruEmk
FiQ1BfT6Ul3gWPt399+EoGpAB2CKQ2iIoUEGCc0e0a2gPNI7A5/+3I29EHq7P97df9hACMwWPZLj
OI7/HVT2CE8S2RphXgnOx4x9K7mn+9BQ8SNOmUoiMkiXUToZpLV6vI/cT4GufvrhCX3StRU4dapW
JSp6qDmDn8L6MABWu0l3DwOqzSCaAMN6H9cdKNu2yoC7m1ry2P7GXAcWQHtQiFXLIF3hRWz1OjJI
7zNxrXS+z0EfhGpFbSq5F5oq+LndW4eI7q8ApAmoNeDRfw8UgNTCYMMJSCPrXT5V9kkijqTEiU9N
y0AACELjx59uBkmVVInJI9UfhEY38lLqXCjlYoYMS7DLZ7fhch4uKrgJQN9xHH8AFNUFe8QZqwBW
mInAPMHjCb0IZ8joc3SMUiOE6ihlTExzHt4zp0iyL9SH0+WWHCB1ri3MoEPjqTGUx8tVgWAAEqny
Pg5rBwpAagVJYQG9Oj39GA4cWE65gls692LAJpFBUt5kcjNIqfQRY8DIIwklUxyn4dXlyM0oUYWV
EeKn2eLpR5N4vDQFJTQzVJBPOX07iVHF/hEppIPubj/BT92MGTIEg5JaRCFUQyMORD/lBJRi6uBI
vPNB0vDwPJcKea+53b9Rgg2Fp262ACQRXEr633EcXirXpmck5IcS7HVK/zpy/88mB5n3U+IdS8L7
33EqnOOvQ8YOEilAZFhR8NSrvo3KW2WrCt5ylsJPE2XGcC1LbYALA6rN6GhiXh34/8JnYBxnwALa
Ix6zBIeKYVRwhRNLKZ31dHQYyCDNJZDCHvrySCpbm83qC6GAQ1gC2gm3RwM6MFMxFhRgCIG9v/TC
1LheeQYuiBTb19x2HzIVmhDUi1sdN7dmkJoTSIDZ5+SRmvEz7Wrt+BdRugMeIFpwE6C/ui+VC0Gw
rVI4B3rtNGm788AGhxE0wFItxC9FFEJDDPUefjbCqGtKE0VD78gjgQvaDH7e5tptOJnHhwyDwbhV
F00icd3xDFxgKdDe0eUVecxvRlAMS414xyDUBhpF/slzHKaQiI/bWnkkwbHl6TwSua514KfoqBxC
bfiIdhg2wAUEQ0oIf/z7Xzl70ki2pOF3QtvzSjTd+akmly7Cv90kM0iiBmeQiO84bbdybQCqCp56
1bdReatsVUHDT0ZWYMDAmsbDbAewAVMhFmRw0yb7Av1P6Iq2MaRWkDTUhBG1PWPfZthUFALJ+Gpy
rG0VbPRz8ME/MbbQ1IVQFEP/OBy2dKUD2G8eoicInwaU+kjqgSV1wxEyaNw0aWxD2rcBNVvEmk07
UfwWHrGfGC0/N33XB20Ie0qoCAu8TYko+EGpboeiIvP4E88gTafhvSS8Mkav3pJHgvBTXk/ECSxG
KKCdtj2c4Aamgs0IBY6NlGd+AihwzRwikJRvAiMqrdi+FuNDqyCoW/Bi9jwMo4hBKJCFt15lOmbS
8J5RLI9kV6k8kj/vuTw8gZ+iyzJumpQ2QCvGgk68UVScArMDBSA1HibOwAWWwn4fwP14CkHVYFVK
9QwShKH2DObTR4yZXBYegs9gKgdeCE14EY2bgsaANlTEBRWGlFA+Kf8vPGNnFklhQR3nyg1px92A
oEHpUtTZ/tufcBbem+5cIh5ppcujLLz7RqjOV4tgaRg/RYcPDhlTIRa04KZN3iWJk0gHlUZK5N/5
VMt8pj7fAM+4ry1mv91Uc0k7M0jhJQnkFBnGFDx162+rEsEniJpN+CnMmU1gYJ0HWFwhFGQYAKJC
HplJInHDaGDUF7F+v6Bd0xYAVxkpnFhuyQp5o5zJIB0KTSeQwn5G8kgGaPqXQrbgLrQlyfvgxrgI
xxYqdDCkJOmbr9Slc8YRSwqnO+cQsCLeNSxwIBUqeJGpl9RiIYN0HCvHwMqRBBJgXH8U6tZ7Xqj3
SsWMEs6IBZHCXDyZCqaFCgOQSBW3wO1AAUi1VQqM/Gw/wQOmEdRlhbiZyyAdx2GLP3nWXLbDqGsQ
exQ6kUcK8NNhteKn6AfGTUHzirggw8jglk8v6KLZxAytwIAFffiX9zbeo5MI6rKU0nkAevFadkAT
ScK7IPqJeiUgDU3owjgNb9aMsloEb+RzG1E78PKAOhgT4VhWhVhQgJEixJ0L2A6UwdYRJM0L+q41
bomH1hyCuiy9FBX9x5/HtSphiAXRTwUGS1F9dDjySahZ69t+Ylcz4yc8oN4RIubgYAHBYCQMtB4H
8ilnQED+vSMzXxfkPwmtf6FJJNqpzHvx63c98e4m4f1/aSw1vrjQd5yg06btaICKV99xWYPKm/Dz
SXsPU6EgIBiEhKYXd+GQHokFAGc0COoK/HqKMwDJqeCylNI5TtViNoOkv6euTu2eNLyXhNeGutTt
ajqP5F8ij2UWMvjZ6NV9CnkBwQAkUgUt5F5jUs3ZKrFkB5I2eo7ZMnHdAYmi67GC0qWoszsySIL3
KZiCUc90ax4JmED6qngsxlVChumqjwwsISAYjCTvkfq/NQauHTOaxHW2GaFmfR0cQG+bAUhOBQhU
9ZJatMCgnkHygLKePiKsoVl494SNij57hQeh4xvRPsFAAJotMgxC4nQcFegdKIOthARn8LM/CLW2
YAhBsZgzcFMO96pQzCAdggKU5JJHmda5LHwij6RPro+k2GrYi5+NgNrXEjdFMBgJA60LlZNIJ9qU
T2rI5ViCzvSQGH8tgQT9avJJK/jxTytrhH/GKerH+8j+P86L3zq6jH8buhqeuvW3VTHKOpJiJQpI
GUmokQfUBijuxM343BMo6VD0b42hXLBJwMfzBUaoOYmkvKYcL4OgmIz4+j0FodGn8BrrLxv9OeUG
/8a3PBF69sDnZvy0GzcC6gQ8moKZDahUSRTSSSS3f0KlwGjQxP2k4IOAyzsqXisv4ppeoPfz1EwW
fksa3u4DycLDaXgKP/M38o4s40wNzjyBm7wmwMhgUYaWf2ucKwhiVBoYO5C00Cni9I7Ea6WFWgSm
atHDilwGSfC+JDMw6hrO5ZGgVYV5oR5b+iBZ3ApoYzYZFBQ0CYaUMCpEoWMHmsJLWzKKpHkTsYDw
XApbIVlQsooQhEbbUDoL/5UAMhVwCk1hWXj/HPN5JP5aUR7gtYLbTMBjOJxNuGlLOpxPAigFwjYx
GDLBmFwYCYcE3NxR8VqhWBoVu5Lwdhbe9ZZ8Hh5qaSjEo8/AZzjrXukRN/Jboyc0kWEQEkkp7Fv/
rTFFTGJpNp80mT6vDIf4QDObN9Iy7/Gnm+dEkZU0YjNIkvPJjvNHin9/uNKQrDaSL9DUqZqVd1Ck
S94SWVqYeUZiLwELWhmMhIFWx07na0wX+0QOWkgmGKOYW8m8KyrOK0tw5j2Zg/cgdK3qGGpn4dE0
/KVNgqi4iqKyBz478FNTB5Qtyb0b0RlGaQOaI+a/cjI7W0mEWxNXn7eR0Ez0WtsjeK3cgDqV1Hg7
F40ylYSXjMN5+Dmfhve/5tTG6jPoPJIBmihqcvhZc7KIUXD/jvBM2AAkUqVYaEkiYeMiJLhqx1Xu
bAqcQhFBXRaTgx9MwnsZpN7PODGruQ+S+DQ8kYcHL2gTfhKNbw4gc6CxUSr4ugj5r5xUwSZiwags
QxOrYMUPKa+GWmnqbmBeizq7kkEy8cnxii4cDe2gg0vmkYCp9ZGUfKNJUwdawQxhrQCTti2+KaAK
SByzSbjr3oGmVkFGwjNGPCABqZD3kqETlNSiFfIEhCp37jqIhRj5/iZXL9fKUFC4/gmCW1GVjd6+
55fRWLnivnGTsJfOaK5JGCeDSPu3xk/4sNOWjCSWOhmyWyqhxn3NGaaN9By8mUG6pt25JLzG+sve
+mvKgTVFsLJWMDVrQFmDygA/HZarDrSyJK2MuNsCoySRKrnCiZT/ylmkzPVjJI9llHYCbNS4JWoT
aj8KjTJI6kbO2BPO54+QvjSBci/vVO3nxio/uCbpG/mcb9kqP4dRkgxgnHsLn0Vl3B4hMVU3L5aE
F+ZUIFlU0pgWmppwqoBJjKFRFn4SRr0OsA+SmCehukBfp/gb+bSPFFQ6kLUjPoFuCYlDdYQ7AWgR
p1NDICQjy2bLxbVVKRVOFpT02DXQ1H/66SGKovDJNC/tRBo+sIl/kOQpYHl4la1fGK9EukOPM+Kq
NiM2indrqzISFhNxg8fl3xonjdQAv0Wyh5HwO06Fk+mlIGaR92984NBxR3OCACUTuaOUETiRFG0+
Ifg0Zl1T8PHTYWGygsrjQq4kcagKre/rl0i1FFGuOfFdki3p+Laykh1Kfag5/umm9d2RkTTyfj05
/QmSwV5VPgn6VInwcUNVYQdR7dTeejlEUrbE4aeNhZUNQYIhjeEMQBVok0NJtPn/MHDsIgZS4zYZ
aIvbVoylVEgEncvBuxAa/R69BqufbPQrztp2FDOlbkf9Og+fEWjuwk/IjiVpAcOKsQzENrpQSO/D
eg8UuTS5AtAVIamomm1LLsZ4LhYTnlYYnGoRf/x5OFUugTSeP4K6QhNJTpW9kx97EJqLO1vlLmQt
qTK4MgNh+n/lnKMeSO1QHbqSALZyUeGyDLBUBtgDoQCGGk9EP0WTMBpmkgBm8oOk7Q9Ccw6Wglhc
dVPoSroPwqIvkYbxm1SJ2+z2h5SKUsBA1S0ZEapH87XsQaiHJ4rCJ9Px5P40fGhxOA1vzezgG6G1
6Muo7EbHHsgYw62/dP0SiUoa5agnsTTz9LOULrKt/bTHn/6P2L3BBNL7UNmLQqTkEoTBhpKGp379
DVUsKEWZbgnDVqRZqMK0wVVLVkuIWiWri+t/5dQapvCgloivQJyUmKo9/TF5dhJB5e+CBiUgBz/z
O6Aa6y+b/DHlQJuLEEsbQM8h+EzgJ8liCimIJax1WHUk925A/8iWb+Fv2YIO7UUTRsbz7ByCwrtR
aucJoeYCiAIfdQwt/0tjFiETdjQBhZ4YlrbtRAfxEzFjSma2qIDEUdm/AV3/Kydnow3McV1CMrSq
Mt7HzYvLckvnFmrxEq5GbB/i8efhVA8rCy94n4IHZOHBMeN5pCtOhvPd/CC0PSRtlZZgkhJBDFza
NA9VX0rEP5XrIqaLoes2JJlEULhkFYFyCKEghprX8+4sPIaeBHwiExwU6VI/fj4ohGKJo3IHVL2I
rseu1//bO7v1yHVWCXuvJ/d/y9kH6T93S1AFBZJ7Ph3ZEsg9E/WbQsgEecL6kV93ZClBvcvTPzGI
0E8ZmsjC65a7PyGahXf+wRg+J7+3XCWKXRXyE1jh60dC9BDxafCw+R+V+6btUEmWCDEJXgz+ihya
QCL+/ua09CfzCtL7/bjruK0wc+k8FmpwgWEEnlmNgGrf/87vJvg8oXR06XSSv2PV4NgIpMxnkjXk
EXeAQrisz8gbjyJMLgNOLIE0Yin+8jufgz9CSfh4Fv59fc5/4u5MoMOof/5tHt1K8OmQdLUQRZ5Q
M8KYGLZ6AfppZPxZ47USVEO4yEgOnJ8tTdARS4d2SA4+iFCfoRMhel9rxBpSSApjjgg9k/gk+Ale
cfz8bHuDlDFZK0AHbyJxAC6kPW67008tusQx3TG+8i7n3+vpTewVJGMjsjkLb4yNOj96LAPVC0l9
/Ayt23aQMibIZ9EjaTD2+Vc5rc9W13KMWgdO7iehJeioc3Y5ubYQGkvCA1n4quXkzI6/zun8NyA3
VB6+hp+DR/UtfolzyFbWsP/Rwbvw0GdrBH/OlphFvc7I9f7sslnqdQ4vJQhFGepk4eUc9eebDAP/
njw+3Z+S0/k5yq4n5kJs648ws1CfToSf0VNf2nMPlMse1bVcar5qj5Ox5fY6wU3P4Pbn6y7nbMeT
fAVpkECK5Y+e6zG0qlAAz+wsYTG+/53fTW9+8cvElYyf/SDVEFXWoGe9jP0M6LQmI6/hJWMrmi5N
UPqVdycbfwA5+PM/tTIJH/qLxgOfyJdn6jOUo06Hgc8ZMifMHMIwQc0CfqawVkXJOt0J0XL4G/cl
C18gQalsNeNdBUPm0TKCgmrUU56TF96hHLyHUCwJL8rCP3wSzZhgOOTRM4vPAiXaws82SgbplvlU
mL9ldEz+qFwQzNRnzv5ewJ1Eq0K2AMmu8ZWjYfgcPPsKUqiW8mxQ2gRVlcMvJE2Z6ULzKvys+nrN
m4gUUXfL6Pd8jCk6DWJdhsnUrz3qAT0EtVnqdQI0xRF6/u8SJOHXZuETaXgYnwAziZ/m5xWWSOpd
zu9N/b2bNzVmWKQex3H8NyMrMQ/3GUMTin8W8v95HUGHXxbTbnqZRagvQ40kvLlytCAFppuN02/D
h/Dp/6hGV+gvVaSrYVWHvmS5R8YaN6Fl9Hu8vYmk2wUtyyNRT8h9LMab/FyJTc9xAinxF4wXvsX5
XJPcDumbc9BwCFSn43d+N70h8GkTUsnPwSPL8ZZjYozmHHU5pB7H8QfQgkS8qpURryzxDvmnCBos
H4LWn5e/xQn9wv3sev8UkQZ8ma2+944kPgloFvFzMH89E5fKTeqhkPXb2H+fXYGpkE9X/xuk8acJ
PQEbswbdL5d3acTuth8btAAAIABJREFUxzEZiSWQ5jF0MFr/fW1B9/nQqPOjx7p/u5uMBE/Uw9QM
rzrRxUdb8VWWcYQz+mv/kfb8A9XtQj8iaAwcBBLvw8v5tYnQ8/9gPoFUmj0iHtWQSPKvvUs0JY8N
FvKz7AvX0CK0HIz9N+ocewYh3nmx28dhCWpeUTAFrtkEEsTQ62XhkX9ZQyLJ+TnHU0qt/LzQdxP5
QMDYXxIJ2um0xmTn6+uP3icflT01n3rvaLTRSZb+TO1+DhJIkfzRfRGKdswRIM9srO8KdP87uwGu
XaiyV2QXx5fQPLFHlE/MInU+9l4PlMuKjObVoDA4cz2Iuc/TnkDK5uBb3+J8rs/AyoC/L1PDoRx1
OqxbhKVud4akaX4Ont0IviAKQ0+H3JCxG0B7JKgKgbvJ1D6CAsqTFZ72waUP1TkSnRMhilH0aTho
/5f7Nhm+ED3V+GTkZx8/B4/cVVzKPoVKgA4KKhve2f/7htbwcyFXJ9k1vnIUyulypnewm8Ht+8+P
S8JHs/DTR8GeXCYJSSTNb42bcb8LzT5+rvnO1DfuY0Bjn+0DoJh7FvdfdvFs7HK2WUrA1KdpGKGC
JPw2WfhwGj6KT+a3HP7zxhaQ2WWMfdmF1Uhsfnb9Nx0hSaz7F2zyyy74LLJr+FUw7SZfrunX8/R1
Po7ZiH2O6fMsaCQJvzgLj6fhvV8hv3NiHrMR/2c1/hEPLNlEPNa121epEJIQx7Au6G8iQb+2rM8i
/5FQTfYjqSWod+V80+ax+zG2ef+30jJ0FmC7jIwfj49PNzNA/llOKD8dm1wHjzSxV2l+Dlondqkm
+/cMxsyuRxbeyo2YXZ9juySUCjNUjYn3lQmk4lLKz/VYmYWfW44GPnFq389/IyEoxS/b+Dl4+IUu
rMYhFewa/FljEqXBM01Q2wScEBLXHV3ysUn8BY93ZLYk4cvEijEvRE8Hn5YU5a4daDbycxMSBnVs
twB9+aNy4Tmgj2MYrdX+6Z9mdMl6V17n8HL+XZ3e2C8krU3CZ1pBGh7/jyMj+cml02ldsV3G2CW/
qJC/ZYR2/RdnLzUG/Vfv8ouN8y8iqNc5u5xcn//BNglMbAxNbp3T/9TGJLz3MDQN7yeSjLvJCHOO
CV8UyqXY8Y0p/OYiH8gyGow5Xf8541RX9r8Yaq0/mRKC2iyFO6fYPCb98Pc/nkBamYQH5mfS8PZv
EfQ/c/Y7LJhIsqlZys/Bh1zDRupzQG6DMbjrJ549SieUyt41Sj+jK20U+avFXALp9E8R/x25Qdet
u/VVeOx7N7VBvjPvHb/o3QSfs1+DzmXiKsrPwccoRGLyYdBEllGg6zWJlEcpCR6j6RPnyWcsSbzX
JpBshH7cTxg6L6Xs/QxeVmSApcRXk4HnoK8SnwQ0l/BTBskObRr8RTAYw7t+FNwcdGWVp9X0cM1a
lxHUVZ7Sv+Dh1w75LMg05OpjAEVjUKikJh4OueIzhk+B/Gzk5+CZHSJVBmLIbTAW6foPsAl1fY5x
Rq2/6Dh/8KdhOXpXjgKZXU6umRz82z9plJn+/Fd7SfgyPhrNfDD6r4gnkqY30USSlp+DR1iOemxa
LTsRZ5Tr+s8ziqKb+5+2mv6/M7susLEMQb1OBJuxHHw4gWRycqMsPJOGt3+bpPPwDD/tzvjyI1c3
YlT5raQmsowGY6b5zAr/m0hKlBpGLf/7WZSaYxmCep3Dy/O3dXbNIDTIUCcJvz4Ln0vDE/iEfiJD
+5YjocLlvuH31XAbjGHmU8fZ30Ty0Yt/MMjPMKr8GUHW3FiAoPYwcAlcMwgdRe7HezPehLcZKX4V
HpxwajGO5p2OUCgvPRKKkpQd5MaCX6lmWn4aYX4ABd9e5RwmMpCu0tx8MOukO6dkGPEHluwcO5OC
r00g+Tn44/dIJOFfFmUgCW9/UVDTMVHdnl/0bnozBqUHTecXMfwLG+oyxqJKpMPNMiLHRl3vg/7f
RAJRCpkHccdZF2TZpel2j5t4Ch45xcQg1DkKOmTouPM2kE3C/581iDXDW0LPLD65SEN7FZakiFEL
ZCHrwZjlh5nfB9/L2QGiddwV/bg7/lS4Mfr3vnflaI/T5UzJzL6u2QQSmz/KBet5Z+tzDXu9HkEi
CfgBjqG5Cz9l37SCL7/1ATA/s+tj8D//+UqUpv8PdD+y6A+onqCT78zwcvZlnH97OYQONj8D+aPm
s0yhNPw4k2R3xBJJ7k/PSyQt4efg6dy3qvL7LRwzuz4HjT/pEX6K7t9X8BsqvSDqCOp8V2aXwHVB
Dp6G6J1rlRzNpOH9XxTxPDzy48IvNUo037X1V5gcA7s+Bz//pIfgMZ9d5FjWSPhzwP77JQT1OqfY
HH6kOEJHwuvzX79PEh6ckkzDf/4fWPcgPmc/KyqStzvj/BzMS34P0kbQ44KfaTAW73pcDQoqP424
RDzWpct/VxhFM/CpFzeHSSXmxc1VCaRR332gPAlvf7dg09HIgKf2/e/8bnozQyl+mSEpOAg59rA1
qoA+xwRdzzb4kx4l3Bx0cUl2a0x4KMkaqyKo18meYpoVYzIR+n77cT9laE0S/pPfwWZ4jvWo34Xj
c4rMCR0342eaVaVE5D6KtOt5ZSnQapR+jnVL15IDSzLlyWBTU8LuHaFYBTtDb/4ttIjCjBMTm2I8
iHyRgvgk5WcImvX8tKjXLCQhpNZ0vQyO/qRHGMcVv7qiY/nJyS5wkHjtiMu7NyaQ3rv+eucLrTkJ
7z5wyQudyI9t2E0k4hfwc/CJurEp/F4PHEddL4OjP+nBz4J0bYBSbixB0JEZuLi5y/l1EKHIOSYr
fzTqfxmu5mg4DT/JJDkd0kRScA2gJB0uyoFZugsbs+bsGRt1Yfavgy8hPLgL2pRH2mBs1MUG6vBr
R9V/fBMO5D/uj18if/R7eBH7fUFG4np30qDVaGDAU/PeuJveRFGKk5S9up4+IsfALnhw+Cc9XpyE
3Bx07TlmQvLTUXQ1gWmmdjIKzXcaftJxwtA5RBuS8Cg2HdOxHnV73rUoeIewVKhE6Str0Ozaeyze
5QjQyZ/0AKEq7OpGYjhZpOYmpTwR4RnTnUgxeip/hFH0aXpqcy4HmuE3HvLpGcWnRH6uUqJk1wa4
FXSNBk9m//G/iAQfK/+/JfyB5btyv/OdztPluPt8Pb15/2abt4OOef5o0HsfCm16/o5adB5jEOvl
Xuh8I+b8RzO+7j9SX8PPwUdrwq20yx2cHGOKh+6YeoPmKhGxbbufEeVZfXzelp2/4b/E+XsYavNv
wYXj9FhzcDsZRr5eHzQ1brGbGUrxSzVJw7KploPKDyMg6XEc73/Sw1x2cVJ/dgl/d5nm+Q/DDsJX
XufsErh++67+zm4+bqGXOHd9ER59TuZ1eO8/DJT/6pfj7U4JP6PfxUHXOjCMujD7qedHMRHuAeyn
hbq6fh4bEdSF6bh7fj397r5DwT/5OcLNTi/CExNTr8MDv03e/yut//XJyOTaRSlxOpS9ivMzz8HB
o9PmYBc7+Nd+juPgs0cleaRBFxl5CzYSGjLwTtYoHrsHQ/ffz8gdzB8l0kfPBZmK7XEQG5ZjpLo9
7zA1bqc3CErxSxFJrUHMXonUYmwOusxF9W42fZVTkZJXku2zq2SGkaN499PrRPLur3CU7H56m58z
hprvcEJsfF+uplNIuVpO4zGfnhJ8AsxcwE8SlgIdWTID+88YNISp73/SgxZe7CDUVUxXsktE0Nir
72NUQqeYMgj97JhITgOiBEXfnVQN/H543TJ8svIzC001P/PsaqfsqEsxeLua7YGqHyzsKv4/jS8q
58rt9C6xb5yhd96+y++37xjQ5I/aX4SHHpvJJNnvw8M/AYSZ7uoYua3h5+ihUFfN9xnrYgc/28ef
9AD9+7mJdYV/M46m1xAUxipwCVzjr8GHcvAbvwiPPol7Hf7z/8S8h1+IR36soUt46SUWOum5kpFY
Fw27+9VnRXpwAtPM8rxQF41XQgYwMB13n69VCE0w1IPoUctRaO6pBUpPPT5nP1PqSH1kCdoukNmF
ug6razSImX0mkXbbD63uqt/9dDs1x+dPu5/TrdDDPz2PbH7+HpkX4Z9rk90hNaaKWw5HgG+efW/c
AfgEfq86lyl+YrqC5dTKLsXgwGxQkd5sfdwsyQfRHz9DULsQkyYFD51ishE6uIcLKU8WDUTRp+Wj
BVygZrlE6anH5wSJaX5mSBqXqSsFpZSko/Y0GxxjAiWo7TAYtOwXSFYWjSLlGS5bBwjPxJ9Aevuf
+pShU4Yqc/ABNqamHA+Oej18mrdTfJLyMys61fxcqUQFzwaXhu3wBKiCliMzzLNfn6JoND9/TnlO
YArE7hA1mfJLH3gc8XIsOS2I3tYch1FRc2g8GY7QU4FPjpkeH1VKFDNjB5dqzEHLMNU+xpT43w0P
1vySKVodkeU5sfQMzt0z6fJ2Y9x9Zw4ee9qqPPz8RwUkCsc//lJ+gl8C1jM/RR+OvN/DP3A8Ongc
q9fYQawrvMG5cew+EZ70O5zm3fvt8Zv6Y8a/x4G9R1SmRxFCz21GIwOeOh2/6N3sVyBwjUOzhZ9h
rMXhan4ewaBt9npl/lXO00TxOJcdtOwVkDQ/T0/sTmHzlY6zaxFCPztmDDVehPcA+Vx/EpTiwpaD
J/QVVuCTZGaWnwGSCswWKNfEIL6mfnA8tInRFfaFynM4rDi5JPkTSB98HABzqDltiAYS6gRN8fUN
eIyHAvSswycjPwv4uYkSDduDg7bZ5ApWoK/T7yFGzcFW5ekQNBi7I8LzREYUmsBfkRtpzgHgxr33
oYOTmDwVBdPC9BTis4ufOXm6iRIdDcY/ozkYWoCTP+lB/4/aHy08WD5Z3Oz1KvCbHrgkr618hZ1O
gt6Dn+SP7HTNmvfgwafP34f3+9zSoOfB6Rj7Q9bxs+49z75vb3iyUYv9f8wq0oOrPvELKzxY/msn
8HsEH3ZhOu6eX2M3n99wEwAji0nf4UG0OQePPVGdhzfxCf68/GsXpXidEXi46htlDfbBJA06P4Tf
ZWfUHFRsZvIRe2T3090I5Xc/p+E5WwQU2fsc9d36F+fgX54RtBmNmN/D4b11+zsdYlEauhTx0wQd
a9YIy0Gjf2W8t2lFepCRLx+lb2dUMSjZ8yza/cyk4K2tUB+hnTl4IUlhdcvBE6Eng08DphwzY9CU
8xOdZLvBrOx8uaKSSJcQo63KU3lyaYxHbQr+83ZdDv51FQdgCkPTtx8PBehZiM8ifu6jRO0PIhi0
zWi63hpSkV5Cy0Y0Kj6HPnZ3Ty7pzn6Sp+ff/kdW5OBZGlLNnhymZws+FcwkoLqREi3HrISpH1dI
RXq7ST4rO1v5TxFfO8NhxxK4BK6tr6Fxp3yHc+ccPPAJMnn4+jc6Z9ehS33F0J2/x4NGcwprUEV6
+r/vGAwu/v8Gf8GJCOp1Itg8gOvpTWMd5e1y8NhTs3n4BD7nP0L/uuZMk/pbIQGuYo4EnLCrcEHl
4Qdio/7yWF8dsUc2OqNJo+4XkJC9z1HfrX+DHPzLc4I2oxHzq4rcG3fTGwSlbvcyfvITK2aLP3TU
QNc7QEFELt8jpVM/iU8uyx9R723Su58oNEN1lAf/j4ciBy8HKSpxOXiOej96wvicYpLkZ1aUbkTS
fcSm3R52g4r0azJKtMMqbtoik0m2A3oUOftpnGIiEQrKUA+iCB1fFmqCpehyd60nQ4D4pPCpk58X
4WeVihy0BqaOriLvwlsfqkoXgg70vHqCLjj7aZ6eN4A64ONQhoZy8DAXB6t86MvRkvBFpSdATxOY
ID5JZsag2c3PKpIqHFLNrkj/ZbK0haCUHAV2P6egnGpL8893DJD5IUOJc0xzTv6t1Ji8FK5yZypc
eg76bPGJq88pMjlmXoKfFxabwyv4GFOC4fW/Q3p/8sQ69C6Rr8JUkBga5u37ad5+HmOS5+ANg7pW
nIfnjjHBP63ZTxgApbvuRm7L+Nn5vQdbxPW/zGeQ/K/x00me30NQ7nL2fZni1OApiVAXDxOze78N
yd3+pIfxiYf9wK8YCp/QD3HG1fyZ0L34qQWjmEmu73gPdHkQL3EFp4vMPMzAS+t+gn96cxrHH+97
ofb7SJ8dxy//Cqfz33xfeLG43m0goOdmE6QCXe80tW7nd7/IwAyr+KWKpHZbra40n8R9xLgivbol
QNe7+dq3+wnseCLUjP/5jg8+DoA5ZOik9zaC4PG5FgUrjtG1lq2MnlF80iwNolTGzzXqUCMsM+30
jJMC7U3BiFWmepIkQcdy1D8GSh9cSv0RuQ8Zmj7HBFP0aftskFfsmwF+s73uz64KfGrkp4e9JBZb
hWWrxGQ+yo/DoNPnrAqdF9EypUYJuekfmU+J0Hdo2rLTU51wKRETohRF37zkzZ51Njrqd8WnjU+D
mF3yM8vPCga9NbHEFH+696n9ivSaRb38Pznw2MBw9PLUPbk+2xvq5e2bad4OOz7/642EtfFzWvMa
PPF86p/llxOpTsR/Hz8bvu6ZBjxjeoyp479qI1omV1MQpv43Yk7NRAr+7X8bO8Zk5uCHA68GzRgF
Hsnm4Qf/SbaJIBGPrIpodZFd+bk7FN7atCI93DT5b3q6lr1ZeJjKH5XUDkltfv7iZZTHP8/f4/Ai
9vsa5FcY0TBMG1bDoRFQvY53us7vsBsEpW43/nt+K36CTB018XSfzu/HmMS7m6mZ11+Nh53jSvra
IdMtTmsrtCh/9HuYOXh/WTxWoJCkxBeBhSdEzwQ+S/gZFKWBzt2v0Bae+b0i/Xj25SRbRe5s/ojU
ozkRyiI0nD9yIAqi8bQW+Z8q62C7TMZG3a74XILPvfmJtvXEhT/9bfimQDWoauEh/bCccxFBU7VD
UGjSNUBHvBwz1JSbf2uL+skGeCibfTYK0dMTnzg+p2gkmbmYn8OmBi09ceph1jTWu/CFH0nytNR/
XsrQ6/QvT90zk+kX5/z1gu/8+4N5DR7Kwc/HW1o0Dy96IT76o0KWgTYpL+PnBuIQbJKn/fdhJPpd
svvVS0sSlIEpR1Pje3T+7h3GnfsNRxkagehCjGIvxOMDyH+U94L8/A5MxId/G4eWLozF4Ue59tWw
DQwH78KnIu31W6OVyXY3A0/lj3Sn5wv+DOd463O8DH6PLVLw50dFrSZMBbreO95pOr+bD03NAJRm
L3F+ruediJDPhjoPKtKP56vayYy0fQlKXSK5pDlOUyn4xGvw8YNMdyvEkG+BrwY6FKEngU8DplMp
6l9fmJ8tTSRF0YLK42lWSUa7bU7QVP4onIKXvQY/F6IoRe+Gfy3FUvJLZ5on6OmJTwE+SWbuzU+n
bSVKHRfnT3pciKrDj1VAUOcUKIdN+g8ghVPw7v2oZ6Y450L0ICj6Yv7Wht45hWJ74/AsxWeF/ExD
U8XP4Ue6EiuHLi8AVbEIbVuxFB8OylGgOyBCkwhFjjEZQtTA5N+6i6pLaTTnTTYbD9KzAp/X5efw
gzRzMfNhHJfj+IFhM/4cGripp1aF6S5Bx3I0nj+KnJ4//YdyCB3KUOIVThuiWYymm//FmlqA9Mzh
EyTmFJlhZhLQTPKzmZAtovQ07BZUXhbEO02uRsfeeMAOFK2b6NFpzmjKSSOO/wCquxmaY6gL0cfS
a+Qo9IWbGxXR06apTH4yTIyJUq/THl5GyAAr/X+UW1B5/KxVVE1tLuBheDpgpzZCA6G7dPMTfYVz
jsrfYzr0ZgTYJRr6PTTsxkOj3gX4JJm5iJ8poLVIVqEUnRVUltPLac0sbSVoJn/UhVD0FU5Db0IU
vdsdoDHSYPniGU/GIHpugk8tSkv5Ofx0yyQr7PJmeM7CB1QkbNiiWmHnToIC3fnQvSJ/NGborPs+
hoPxbVXCPKWIibpJ6RnH55fzc/iZCtVkWmEahsdx/AEU3ya0h9fhEN/TbCRoXHhulD+aM1Sfgg9y
UTDzbByjZw6fRfJTgNIKfqZw14Jcx/B9+D/RPPlPJnd2XGKdzjjwKjJ2PRuwXon/qE5hjQ4MRjZj
s3u/uVIvUUzE+GdE/0K88xcArJ/KvMQBW6c+ujyTr8d/Kyvmw0hBZXzYNhQp1IhLhdykqiWnXnyH
X+F8/1/y3kcCZehccP4es5GTxYqTTAC65yYTpAJdHzQ17427OUuBAQCloUtZpx58qDPsgg0bBZVV
QXwlGOGPA3sLkkYuKvkX31vzR0OGTnpvIx4h7+uuAaSg5jXM4vRswCcfzAgvJ4hGLdfJU9jFMfwc
/niV87IsVQ1rCZo6uATqzppXOMcMTabgH0tRTlKQm57pZGzUXYjPnPwsk6L4uGp4U2q+tI+K9Mkg
Xh66qwxbCZo5uJTXndUp+Cn9QIo+TG8tDFMCmojHbDBGzwp8iuTnan4OP4nKUDS3N3y/vCtQFSyd
4R4pmwRsnqBAd0SEEin4983PD2J+ylCYodP+++BWf84DfEqOni4+ids5TDMs7eTn8FE4c+WGMmoO
hs2CysPOyLBtqEJkblhAUEB4stQsyx8NIDhh6FSI6g8y1TQP0NNxMIpjxafFSAumLEu1KA2NFwwH
DG2XyPCz2QWVF26IJgN2Z5gg6OGZuhl4JIwHQ/f6VzgH/4VTwTmj6+u4Y1LaAGk7NxmP7IFPVn76
oIxBEyfg8EkRLPao1+HwsNMuqPzq0s1SfJ6c3CQ0pv7gEiJCzTj+Qin4Ro4C5LSt4vTU4TMnPwWa
U8nPSiw6wwXUfBkeFlSW7Svaw5vIzeA+J7cROqPpBvmjgQwtScHfV10hSDFwOoaTsVG3Kz4r8Amx
NCxF+/g5/FTtotQb9nyGBZUPuLNpuFZuagnqC0+QmgYmT/9vb3d04D7i5URxWnITo+jd8K9JWApT
EzCfDUL0ZPEJEzMlPzuk6NVEaWR40ukVVMY7NxleTlCge3o9xykexwcQyjDUhChO0RfzZwMdSWKi
jtNRjJ5KfILy8+v4Ofx8G1LzpXNSUFkWxOv1ZAUsy4SnsHQIEbm/s++DhQM4ThgaOMd0W2oBdRkm
Y35mRnoq6LkAn2Uo3UWUBoYPZ9jv/G88B95Z4JP89w0/RuS/h7oEuqFr6wa+8+9HZUOGRTWsUiIm
lraoJYJ8jLnBuB/5n+N+HOYddHMNfg6fmkRcYFjmcxxIQWW8szTjlPQZWr46uaeVwsITCeNR3WnE
6num4G+rLSBHsw1it2E0YSrS9YFT8/6drcmbMDPT0IypGHj6BbIL6JwWVM5BbNjZBctslB7G5hiP
9Bucxn6neXhe8grnlKGpFHwnR0HVa5lNxkL09HBq0BQc0khRxqJEn/ZDNfScN/e3gsoLhOeGmaIo
NmnhGdCd+vzRx//6RHFactOXog+zvyZHKYhN33g2NuovxadQfoY15xp+dkE1KUV/j+OmQGVB/LBz
F1gyBKVOzE+EJ03NEDTLUvAziE7RB0nRk/GthWFKQRPywaXnsLMMnxgy5fxMX14EqonOeUHlLKSG
c446a2ePETR6mQrdNYfnZXufASF6X1UcEiMcDDTvMYz0hOjZgE9Wfu7Az8mnQd1lgExy/Nb+cy1a
P1/B7MR4+NL/DT+/xm7s75d56//RiUnXyPPRb+Jokwz8van/rgeYiP/4MZi38ztwibDMXMXPXVgI
zz7uvF1+1gN9MenvLI7S24VnMnSPys7fz4OfQRk606G3BWRKzb8lFg7QFQ2AuGEyYSrS9YFT+x6H
6ewGGUCwKrzM8rONhZnOz3fhkyHxhp1lBOXe2qwtvkSfYhr0zBkaP8f0WGmtIAXVLw3PYfcG+OQD
H6Z7d37Wdh5m56CgsoebY7/O0EcWC88ZHZMiVIlQQIbOFOdUiB6AFH2aQZaJBoLTs5TSU4bPnPzs
5qc3bQBWazrtj5yqB7qPxox8OrHwTIXu+OF5i5m1b8GbahOk6N3ygM25KQXms1GMnkl8auVnnJkN
UjTitInqfO0clbMjpBvulOzcKXRnN0Ixak61Jbf56SI0e4zJS8HjWHxfmrAnCUzck4EnRM8ifMrk
5zp+1mIt24k7jQoqv/rI9N5ijblWeE5BienOHEJ9GTrqGoP11m+x7m+ZRdRlnIuKyacG44GI+Izj
M6tFF0rRy+hT75njcaegcqMaLdaYPcIT0JpGygiFJofQsAydM9SDaAaj8gZweW4Sp2cZPnn5eT1+
rtCnsfFxQeViZSjUmI6TgKDum0h86B4QodTmp/INzjkqf4/p0MlkGUchRWsYTYZG3WJ8tshPDpRF
/PQeUKxPY49/9f/xuPT6iAo1Why65wnKgRW7xs4tJWTnBww/6Tji5URxToWoxdc3owMx1DQInJ5h
KT2r8ZlgZjM/SwAXmclzmvn/MFhcoSGFWGwSnhA1p1KT2Px8R6R9P5ShkhQ8IEVfDFFjusHcdI1n
gxg9aXxawAzBFBlokaJC08X6dep/2gP11Zg93hiae+MxU0B4+gKz7fA8fXYeTB/NBKepNmGKPoxv
LQVTCpqQz3QUFSvL8cnKzzp+UvPmxvuc3kzPBZVLYPZdwlMXumMilNkKRRCKpY+mrDQheltbHBKH
S3cwRYSV5BQcPCF6kvhskp+kLP1Hpag7/nt81AMdtn2w6o4HCepjsyB0b3qDE5Kh0hR8BKPDKXTN
n29uAdPTF5/1+KRZGpaijLFStYYepXvou+nbMaZqNeqNS9Uk7hVmLB+6Y7pTW77Ol6EsQ12ISjCq
aAiKDZsEPevwGeDnUinK8LNYiqbH303fCyovwaY7XkTQsPBkQ/eI7sQj99L0kUFKH6KP9baAo6CI
peEJ0jOJz7z8bOOna1zDT/cjVo//Xf4p0JogXigs8UdR3KYmyxAU3PwUHWKCRCeRPpoL0b9V5OPx
vu4aQAqC07Mk6ImIzyJ8Yshcy8/oZLBpI4o/TT/eRFKyzDPFp9otdJ+F68kMPB7H+wiNyVCDoYoM
/MuqlLIUpyZiPxsF6emLzzg+G+RnGKV5kq2RoinTz4LK5dgsF54XCN1D0Ox6g3MmOE2IEhR9sb+3
AE1ZZoJ+0+HF9yrPAAAgAElEQVQwPcvwWSM/66RojJ/ERyjgo2s6qAc6bJsSdvfQfQbKks1P4Ruc
M4Y6EL0tKx6HURpqHzI3QOmpxmdefu7Dz+Bka/k4a4/xQTERJarKTVeG7oDW1L9+5Nx6m6FDNM6K
MQWPMYUxWtYAPpPwHHYDXc59VIzSyIwzM8zPRilaZDryGhVUvig2/QnEoTt9bklz8tNGpL8ZCsvQ
afcBQPSx3JZyFFO2hhVOz4D4dO7z+MzIz42lKDNBjenzclgPdM94XvCsFaF7bPPT0JmCNzjHMpTN
Hv0e87E3q3aOYuS07WZjGD21+DQgiSFzI35eCaWu17Ae6KtXDcrKtznVBEVCd4SasQy8vRWKIDTD
UEOIohR9WXOlJEW56duq6Unis1J+Jpgp5qcQpfXPGjeiHmhemHZuc4o3PyETJIwPbn7Sb3BCcfvn
z2MmOA0heuAUfdj+NRFLGWpCHgw8F+MzwM+ZkVqKNpCwBorUJ5jUA1WyclG8HiUoGbq3bX4KXoLH
TjFZQtTNwFNM/FjJkDfPS8Z7Oi6kZzc+IZZuws+tJgDm8kJ4AeqUcwUnqCRo6eanxczQ3icYts8Y
6kH0trii0jLHxvTkcwuYnnJ8wsTEkLk9P5eRMDLXcZwLKgvwtOlctfWWoDA+tPmZfoMT0ZxThkaP
Md0XnihEzzYIyyw8QXoW4jMrPxPM5NCzAUqL5vrF6oF2Ssz8XF2bn9AZppAI1SIUkaEzxTkVon+r
yAPkao6CgtYyI+iJiM8qfNbLz5VStFNUsnP5Ifz0SXtJzI1C9xkoW14/+mRe3UvwEEWfS64NpCA4
PcvZIEhPX3xS+MzLzy/gZ6dAxdpbQeUyfI1aw3O33vzEZecbI9nAfShDcYYaQvSAKXq3hK35xn0N
HGs5PX2e6uVniRbdjp9FAhW7xOqBXoyVEoLWb36WZeCHovPjJzR7gXPGUF0G/nXFJ2Ea0g7ENw4Z
uAQ+UyzlTNbxcwFV4yH8rO3ASo6gFZufId0ZjuMxhCZPMXkQJSn66vTZBriXNHeauUGCnkl8wsQM
8LNUim7BT4KqgfZRUPmbLxs3P2HdGZWd7t7nEJgjLo0ZGs3A/63RdJCuX+rAjCw8h90B8RnHZ0R+
/o+fyku0Huh3XF5s85NDaFCGzhTnVIgiSvO2utIcVTSIxZZRip59+Awg83/8TF8O6oF2gCzWog92
D4Gu3fw8Y5FgZgShoy6DoWYG3v2BruUoqmID8Bz3l+OzUH4mmOnTJkqpYOtEqX4PFGkC7talj1o2
P0Wyc20GHpCiTzvMVNGIb6BtKqdnHT6z/BRdC/j52nq5G2qheqA7XEqMWbFJC1JBBv79N8gHQr18
0liGcgyVHGN6XeNyltLfH8dhOozSE8Andy/GZwEzJfzslI+CS68e6L6Xr+0LNj8NYcmWXvoE4QiN
M4Y2HGO6O9xbkKZhzeE5cvAM0jOFT4OLAWSu5ufko1zi0g3hd2ClOEYvICiKUzQDb2+FuveYDB32
Tch6G/CPMUVo2Bd9+U+aW/jfeKMvic+g/MSQuZyfO4CQovxLc+uBUu3iBEUiemQjdI5TfPOTPPjZ
mYG3F0cYo7UNgbRhk6JnHz5BSkKYJOF4QX5SbTKbXw80Glb7n2g7gk5piqSMYoVDcNkZQGiSoYlj
TPc1tgFHsS+MZTUbi9Izh8+Y/KQxWStLy/hJNcWTZyF88yZm/slygirD+Kqz8w5CBz2jrqngnAtR
E7BvVpBhQYO/VqYhQ8/F+IzIz8vyc9LadeusHujs8/VytZCgqgR8Pn0Uz8AP7gtOMeWPMT2XXwNJ
KTliG09HdfQkcRq8K9einEmUn6+tnZQTY7Ie6GzOKpgqjH1UyqipPztfkz6aMbT4GNNp8UlZGgji
HBcOnsPeYnwWyk+95pTwcykpJ5dvIfwW0XhUjia6yfQRFsYHRai9FRpDKLr1OROiDkRvq4pi4tsC
JnkaICbuOzfI0DOLT7n8hDCp0ZxhJE4+yQJSTmZ7qwc6e0JvNF64ywkIzGT6CBWhrRn4Udewz2Co
B9EQRt98ixvwEMPE/15bfVvjk5WcbfzUQrOAu1g90JPbMph2EbRu89MSmhYz98rAO4TMYLSsQXzm
4RmmZw6flfLzG/j52oqn+MjC7wzTrQiK4jQmQtMIxWUonYH/PY79/x7SvYHK1jRj6LkvPjFkXpaf
r62Du7f2UQ/0NAlDQsZP8bzaDc+U7sSPLZnM5JD5STxQhloMzR5jeqy4dpCC4HRNp4M6epI4tWi6
VItqsOpaCKA5aZHnmfVAT/ZbKEz9hmeGmvmz8wte4JwxtPIY08sqLCYpwU3fnIPnsFeOT4X85JHZ
x0+Kgx0K1fGD64Ge5lmnMPUEnaSM+KS74uz8yhc4Z0J0PnAfZbD4sgZlLCWpiTmV0LMPnxH5yUpO
kUSlkPjaVkHz9XL0JtLWCnPNhmdEd8KRuxnH75GBN4XocV9PJBE/VizoH+Il5T+38L9lVp8WnwL5
mZKcS/i5h0J9tlE90NNU2ynM9QQFdeeqFzgHFMRlqCE3fakZwuiHf2EDHmCZiOlZh8+0/LwuP19b
h7FXD/Tk1c1HdzqkO5MyyurOaOTOIVOdgbfkpidFjzxGSxrE5gA8x/0V+MSBmYepiqUarLoWKwnr
lrNbyUf9hqeKmvn0ERPHA/cFGfgpAgGIPtbYco6iqta0q6dnTo2ixEwicw0/xUgUTzepxrQJH/UE
RfTo16SPsLDdYGg+AX9fa+0gRcHpmk5HUXquxGdEfkKYTDBTzs+lhJ3UAz3ZLORj6YZn8p3NUOSO
y86yDPzgZzhlpS02UYreTQ/cPtgIbCL2HDyH3UhXCp8C+SmTnJvyU0DYqcVJgdbBVGKxJmV0qfQR
wsuJ4pwJUQeiDEWf9n9NxFKWmpjXfByn51p8puXntvycfMYVFj8SiG0jNksIeqH00YCCYxkayMBb
uPtbVCwQB4vVnSJGS3IKw0JMTxafODDzMK1m6e6yFMLqtB7oRcVms+6UR+58+ugTmFDYTjPUhWgU
o4Mpqhoyu2VD0LMfnzAxA8i8Aj+PHou37nk90El3j2BNdLceW9JE7qnA/RN5oAw1GJo5xaTAqL5h
YA7AU0hPFqel8rNEi24pS4+oxXEcn/VA1Zox7CgRmzJqCiJ3nJkfiPwApNcxlqGiDPzvYQyerRDD
2gYrWtNwOojSM4JPm5d6+clj8gL8PHyLnON7PdCT31JUjuerICifgG9OH/nEhBA67JsydD5wG+T+
HFIzSGFw+rYcPbfDZ1p+yliaMKGsW7H6Uc5uG1Rq8JiqFRLSnSg0qfRRDKFo9shiqCoB/1iFpSRl
uInYz8cz9EzjEwemGKbF16QJNUnRfJ8H6bdBZUWIrgrpNZE7E7gjCAVlKHUS1IMoRdGH/b0JaMoy
E/Zj4TnuBsSnz9MK+RlA5mb8XIrVe/usB6qJtMfd6zc5UyG9OnLPHQMdik5Ehs4U51SIuhC9rSwe
h8OFOp0mykp+GsMkR8+F+JTKz335GcJg/DGDeqCnSXuYuBdBt0kf9b+/OWeoD9E4RofTVDRoZsso
Sc9qfKrl5/fws4y2o3J2C5i4AUEx3RmBpjB9BMTtIwYy2SMLlL+HMXgyWp19f28YlE2r2eC4PyY+
y/AZgmkrSzfiJ9M9LCYSlqOa7jUEBQdikbsJyTdG2sgcETMqQ6eC0xCiNmHPVgdkWdpwNWtbpukZ
EZ8cTq3BtPzcmJ+zD9PTPawHei2BuVR3hkQoFcePVCeAUAFDFaeYVoEUB6dvPB3O0FONT7n87NWi
l5Wo43qgr20FQf3HpwiKHGFCcbpH+ij1/uZUbzpaE6fo3fhgPAKNwibkMR/H6bkVPlGY8mDNsBSa
MzqLpHv2+NcQPk42rlsiTTME5Y3mODV8WtNHAwoOwTjcDp0z1IMoR9Gnx60JYMpDE3U0DIgoD6Gn
Fp9BfgZuOvkpRx/XPXvOTyXw4gKTJegxcT3GNrw4DYbxpux8Y6SNzGgGHpWhFik9iN6WVICGk5U7
3VTQNGAmHp5x8UnjUyQ/s8hkuZdhZgKUtVp0Vg90tcBMbGzSLxkFMkZoLikhQmUIxRlqCFEfogmM
TmYqaNDEllGWnuX47JOfGQZW8LNLop5NflhqdgnMVGqIvU7rzqgILUBonqGKU0yrs+/vDUSyaTYd
TNBzGT6lyLwGP49Jd8rzXA90Jzx2EjSwEQrnkqR7n/H3Nwc/waneNISoTdg3M8yytuFi1rbk6BkV
n1J8wsT8R/hZgtj3cnavw3L2+ZMjJuW6Mx+5F+59Rt/fHEPRYqj0FNPWx5g86/lwhp55fK6Tn+tY
KjERIvb9IH0p+75Od8IilIjjJQidyNAJQxtOMb0swkKUctiEXFh4jrtX41MsP6+uRYEHoSYf9UBX
h+Wb6M40NFNH5z/i9HeExg8xVZxi+tJjTJZFOT3dDuYWJaYSmRvzU2nyUQ+0IOYGTBoJCg6oI/fU
K/BABypDeYa6ED1IMfruOGgTpaxqwFyWCUPPvfGZlp878xP6mFmTQTm7V6MVorJXd6Yjd0toGnfk
VmgYoRxD86eYNBG6kpb8vAF44vRU4HN/flazdIlcPQbdg3J2kIyTmDRmj3i0BsP4sjNMGEKz2SND
iII6829lSTCqbCCSbbMKeu6CzzLJWaJF9ebcjI/LUTWmJaH4HroTfOm95uh84SvwTNBui01Ait7N
Dsy0thFaNgZP5Fto9NXiU0FMjIxfpEUPxmRUDzTDuMM3aSRoUneiL70vfH9zQEFchs71pg9REI3L
QEqA07eeD4vpSeNzofzcQ4vWSlffxC1nd3qiHoPc7FUZo3zkDsvOpvc3RzJUm4AnKHq3PiiXSOOw
CbkY4wQ91+MTJual+JmYXjN7uJzdxrpTGrmD0CRk53avwM8Z6kH0tpIoJp7Wp4CmAWbCnpZFkp7l
+JTIzwAZMTBdTovOzIcV6TsxuHvkjkMzzMyyV+AHeJozdMUpptkKHc4VJ2VorgA8J/2Q+KzFZ6n8
3EOLLkLvpB5odfidcBXqzkjkPsdk5/ubAw5mDzFZQhSA6H2FSSJ0JSsjM5tWaXoi4pPFp0h+9vCz
hKWLXH8uTk1Idyoj96q9T0dk9rwCb3ISgOhxX10SjGobCuUQPFP0DOAzrjeDxAwgs5efq1g6L2en
R1/JfueCyD0oO5MvHyWyR5OgffIDVuTf74tsA5ASatYxJem5CT4b5SePyRJ+/lImSZbOy9mdJshg
TTPNRpF7fO/TROInQt24HQzbJ0y0GCrKvy8EKQFOwHo+nqOnC8dBj81Ljfzs4efOWhScZpJEOo69
qdkSuYPQjItQdit0BFkwe8Qy1IMoQ9G79UG5xBqHTczFMCDoGROfLj4b5GcWmev4WcvS4zg+64Fe
hJotkfsWCfiOQ0xRiJIUfbrcmgimAWjCnjw8YXoi+HQ7GHz2yU8ek+X8LGDp73Hg5ex2o+aKyH2O
ycQ773WvwA9+SDPBOReiPkRvayoCw/Gi9jYPJA2ZybKh6ImJz4X4XM7P67LULmc3IeXpsZ3UzEXu
aYKq9j7JwD34CvyYigGGAhDNYHQ8U1nDpjet0vQswScDzD4xujc/gcXguNrl7E4TLSLlF+595k/O
p17fNBhqQ9Tn421ViWJzbUPBbNtNR3F6LsCnRH5mkbk3P4NcHSSRdqDjP7f3SRNzQMEhGPlDTLpT
TJtwFJe0juV8GIgKjb7PLpqnidtC+cljcgtmMlwd1APd+/pCe59M4B7b+kzI0DlDjZH7MHmIaQ1J
cW5C5hJ69uBTJD8X8PN6LGXK2W1x3RS5K2QnpzplCN3vEFMrSUluQi6GQZKeCnzG9SZOTCkyv4if
QDm73a55o5Agbdj73CEBb5DSVZp/q4hi4ukbIqNpgJm4Jw/PST8kPovxKZGf/+Pny7VxkD7a/rf3
OR30VOd2CXgXoiGMnjxPDZgmTkt+GssoTc8SfG4jPwNgbeWnqk3qgaYAN2vlBN1x77MgAQ/KUFUC
/vcwBk9GeU1ZscRjzzCtpoNaeorxGZWfV+bntKkekClnlyJrA0Eb9z6FgbsyezQJ2sc/E0OI2oQ9
W22TfP9sKJ5tO5Kem+IzSEwpMmv4eWrlwTxdzq51KxPi4Q57n7nAnY/bixLwNiYhKXq3w0x7GqFr
HdP5MEFPET4dQNbLzzJ+plhaz8zTNVbObguCbr73SalOPm6HENqQgEcpejeFrQsaAU7A2hhP0lOB
z13lZ1Jy7s7PqmpMJRH93nufl3sDfs5Qa+g+HinF1ERSjpuYh4iemPjcBp/X4Of0M1ZcvzesHui5
LdOjXQQVyU4ujo9ljzAZajA0fIiJpOjD49bEMOWhiTvy8MTpiYhPGp8MMFeJUSE/Ozg5dYiUsztP
uCFBI9mjgr3PjuzRWIYKDzEhFI3Q8GO1hlEcbcgcpk0FPcvxWSA/s8jchJ+nBjsry9ltQ1DB3icu
O4WB+6oEvKk2fSmawOjHHC0Ne1QInrOBPfEp4af0ppefpxabCC9nV07TgFH6oJJAdkoD96UJ+DkA
EYhqMFrcUErbdgp69uCzRH42IbOGn6cmEK+F1ZiEDliaXQzNEhH68fvm4z6UPRriL8DQbzzEdBw4
OH3T+bCcnj4+18vPHskp5KeAmafm1QPdg6CF2SPJEabuBDwqQ2mGeloTpejdFLYuagQ4AWtjnKHn
jvhUEPPb+Xlq9wGvnN3ZqTqib8oehfY+M4F7Nm4fas4BQscMHf5E5gy1hu7jGx9iOj1T6MHTExaf
gz6gx8FnjfxEIRkAYBE/p59K40yVsztPV6FHe7JHFWF8f/ZoxLkh+2ZAtBlaeYiphKU8NWE/y6SA
nt34DBIzojj7+aln5uk6Xs5uf4KGbqK5JE+Trk3AGwxNQPS2jngcvi/YEFCjwCRniMBzMrAMnyYh
q8XoxfhJOkzeROoN0OuC9V7ZyalOP24PI5RhqCVEMZ0Zxej7DI0Ne6BtJaCnCJ+OvmSAuUqMCsHK
G2UcJuXsmuVlNljXQrPs5DwrOtVvwFsM/RcOMR0HzuogPJP0VODTwWm5/LwcP1MidVbO7tRkerSM
oJXZo7gIdYkaQiicgB/9dOZy04cocYhpQ47iKtexNIYnQ3HxKcenSH6ikMwiswiN04/IO0Dl7M7u
KQYiM2XVpSJ7ZAX1VODuxPGVCfgJLA1SzvH68MTYeF9jG4AUBydizEpPnJ6I+KTxmZCfMBYjLCzj
5/SD8fTFHM57oDsG632vG825mAjcixLwI1wSQXtUiB4MRe/GjIOsUdzEHHjpOenfEp8S+dmEzCJh
GoHsTzccV2x3ophUBe4OMiNxOxbJaxjqQ5Sj6MPhrxWylKYm7GaZVNAzgk8HkHH5+T9+zo3eytmd
2p7bnYWy82rZIzRqDzAUgChP0Re3R0viNIhMyt+0ydOzCJ8t8rMSpt38PEJGVjm7Pbc7QyH9V2SP
MMnJJY9MTgIQva2uOAazBCx+cAieswFQfDbgUyQ/US5KkVmFxhh9zXJ25wfXS80AG+cJI0n2KCxC
FdkjLGxHZehcb1pCFJSZt3VVGJ3rGopsx05BT0x85vHZIT/TivOawhQvZ9cvNdPBekSRJkSoOnuE
he1M8shiqEU/RIre7UDTBY0Qu1F4UvTcEp8SYl6Dnwdk5NCXKGenlJqrCXqR7BGKUPwcqCE3AYiC
aNyNo9Q2gWdsjM+GUPGpwacDSAaY381PiTAdlbNrkJpLCHrF7NGAd3DUPmOlEbJ7UpOg6Mt6W0RS
ipuQg2WQpuegE+hh5WiJ/GyDaQc/D8jofjMqZ3eeoQaUG6TcRYG7ycia7NEEl3gob4LSjdcpij4c
DtYr2Ghsgl4ReE4GouJTjk+R/ERReA1+cmB1y9ktJmgk5Q7G6lfKHiGR/ISWU71pCFEforcVxALx
tCBlNI0xk3A2bQT0bMJnh/wU81PpUjLgl7NbS1DUJZJ/3yZ7hGjOAULTZ5hMhgIQjWL05PzefPGr
athkthVJT1R8IvhkcUnhs4CfEbJuz89ZNSYoop8PlBE0dE4JjOnXZY/irx6hMtRkaBKiSYyOJ6tt
6DOC8GToiYnPAD4dQDLAbFSc6ZsAi+mB1+tJPdCWjczCLPv22SNR2D6RoRxDAYgidLwtK1lgXtFw
OjuWxnCSnjF87i4/N+Yn7/7apuXskgg8ZgMrCLph9ki58zn4f6cZag3dhrlCTJtxlNG1rq2Intvg
UyQ/d+Yn9mECAycFesEsu0B2RpmZzB7VJ4+GDDPUphuvYwH90/Y4CIeSRu8HFMBzMhCP57P4TMhP
BTGX8DOJyem8x48hzmYD1yAoPqQK3NNbn58kHLBxErXjMtQYACFKUXEFSWluYj6WCUdPofh0cUnx
UiQ/v4ufx3TgFy1nVxafp88pFchOJnCnRGho63PHM0wHHtG/+dxaAUwj0CRcTRsBPVX4XCQ/F4lR
qUvI/b2c3Vp1qYZmTHYqRagibs8ljyyGpiDKi9F315dGz5LgJT1LDJ5Jeq7Hp0Z+opBbzs+YSn0v
Z3dq+xIUPcEUlZ0JEdqE0GHfuNOQm5YQBWVmAqMfszQ28IGOGUvPvfBZIz8FkNyWn8fHgF3ObgFB
5yF95NhnOP+eOcJEboWCCF1zhgmSosdjlRWE5uqGozoMzwJ6RvDp6MuE/Czm59wpMoGSn59Wdjm7
gDiV5ojUZ+VlgTuFzNK3N/Gg3UChKUQPUIo+LDflKCNyXVtaek76+/DJ4bQimM/DtIefB2R1u3bK
2UVwCM21Rf6duLOBysbxUoQyG59hIcpQ9LnQtgApuTvgm/PSk6BnEz4p+fkt/Ax8AHcur5xdT+C+
S/7dlKTF2SP9C/BjfBlq0w/XGYrezTkXWSO5CbpYJth31ezF+jbCp4KYG4tR32pYzm5x4F4rO5nA
3ZaZVBwfROiXnGF6WXulLA1QE3c0bQT0xMRnAJ8OIDvk5zX5efhWw3J2Xbn0StkpCdxTB+cDxERf
gB/ScixDtzvDdF6gaZyGkclNEIPnbGQpPjPys4CfS2CqcxmXs7sKQWNwjeffWRH6AUg3Sm+uITLn
FyYzwxg9T7Cmgc92zMroGcOnh0uh/NQrzuvxc1bO7tQ2Sx6FZOcmB+eBjc6a/PucobIzTKWxubbB
2A7Dk6LnRfCpkZ87iFGhy6wa0z8mOxMi1Nv6dPkIvBI/ROAYi3OGVp9hui2rrTlKCF7XlJaeYnoi
PRwva+Tnd4vRWT3Q3QiqkJ1RZua2PnVvb4IydNJrkdJVmqAUvZseuHlPI3cKEvAEpY7Z24RPnfwM
YnEDMZrWr1g5u/UEjdnF8+8pEdqKUFX+HYJo4AjTUpCS4IQ8LAsBPVfhs0N+fgU/z5/NKGe3fusT
lJ2iwN2CpHrrM4zQ1WeY/lYPA8XnemtDKY9N1Mu0KaLnBvgs4ecOMM1PZpSzu6rsLDo47yDynZAe
MYMIHfaNO02GCs4w0Tw8LT0xTWPMpLxj8JyN9OKT5GVcfgaJeV0xapWz+w7ZqTo4v+TtzREDCRlq
yE1LiEIQDYjRT+9Tg6fK0TIylW3WSc8KfC6Qn18jRj/K2V1VdkoC9z3f3oRlqPQME6gycxgdTNXV
0Kc5dsYwQ8+L4vN7+BkVox/l7PaWnZLAnYnUOdXpEjMUtjPJo+HPy1CbphD1GHu2A02XN4LTnilP
T1x8BvHp4tIhYgKYEmLG1OM6MfpZzq4NmhHZKQnclQfnPdEZCtvRqB2XoRYJPUiCUvRhui1HKYXr
GgfgmROfIXzuLz/3FqPuY0bVmE5mddDcNnBPidCi/DslQ1efYXostC1ISu8M+A6WhYCey/DZIj8v
xU/3pzk6SN8FzZWBu0XFlAhVIRSL5MedIYb6EOUo+nBgnUSN5iboZJqQ9ITxGQvnk9F8hxrdPJj3
YeqXs9tAdkYDdwN8KdWZjdujO5+TSF7HUACit2VEEvFl7ZWyNERN3NM2qqKnCJ9S+UkAU0HM7fj5
uPHL2e1A0GDgTpxZ+qfy7zYmAYgevBg9ez5bkqdxYrJzBOFJ0fOi+IzKzy/gJ1LO7lsD97Vbn6vz
76YQxSAaE6PDORY19OGOHU1PXHwuwmcCmAXEDDGuCaazcnYbyE48cNcwM7n1SROzL/8+Z6gHUYSO
t9VUGpqrG45tz9IYp+iJik8JPtvkp15xbsbPaTm7HQgaVaTEmSVKdbKi84OPPjBHtMvn3w216UlN
PFS/BkcZwevaWgZ5emLiMwLUwmj+nwvmpdWYNtn6TEhS6danMHkEB+0BhppjdwP6CNNmIGV3Cnx7
HT2/B5//Hj9/89WY1AQ1tkj32/pMx/EwQvP5dwuDPiJxKfpiz7lUNBacmEsEnll6ivBJ8jIBzGpi
bsHP93OgGySPKlJJZVuf6/PvE1ZOuOUI0YIjTC/rrY2lAWrifqbRfPAa+CyTn0H2bS5Gj+O9nJ3R
dg/cN9n67M6/kzLUZiimM1kxevK7NTlMo9Bk3B2jOnouwqeOn1cO5o32y5Sz256gbVuf6bi9J/9u
MjR9hikgRj/dzw2eLAnL0GRheFL0RMWnBJ+F8vOb+GnbEeXszq2RoOu3PuWiM5N/H8NyEspn/pQc
ALQkRkeT9TX4eZ4hLT2T+ES6lkbzGprGDPP8PDfHiSlnlxeksS1SwpAI422g5vLvoSNMYNcEfVMg
hoXoAYfqt2UlD8urGkFq15SXngw9o/hM49LhpQqYCmLK+Uk5eeXs+ggq2fokJKkNVEeEbpl/DzDU
V5qgFL2bHrh5fyMlbgaeVfQU4bNSfkYF5yX5OSxndy2CloXxWRG6Iv8eYSgGUQKL24GU3xvwPUwL
kp4XwycDzG/nZ6oaUzFB67c+tUeW+hGqYyggNP9WDAPFx4JbRFKem6CTbSOh50b41MnPAmKu5meu
GhPsNGdhMFSXMZNDZjpuD+ffZ0H7kE0WQ1MQPVgx+uL018pZGqIm4RqE53QkIz4l+FwlPyXEVHOR
h+6ooA1SZwgAACAASURBVPKBExR0UiSPTDd8I7RUhAK5InH+fcbKudw0hSgE0YAYfXN9NAFPE8Rk
53DMRPSMi0+Alp3yM8pBveK0hkC7mdOknN2y/c31W5+5uH3Ax1jYns+/mwxNQzSF0bc5Fjb4A4Th
KaBnFJ+02pTitJ6mtUOY06yc3dUJGt/6pON2UdgOIXTcGWCoI0QPOFRXYHRJw9ntWsro2YzPZfLz
e/g5L2d3bp0EjSaPwmG8WIQqEQrL0AlZPYaqjjDdltQlOEqp3gw852M58bkInzp+Rk070Yr+UgTL
2a07pWRtdjJnQBnV6SKTJuY/coTpvrS2BCm7XeDbmxYkPZfj0wFimRrdM7SH7dBydusIumbr047T
RS9vgghlZGgk/e4LTYqid3vSp6qx3AR9YvBM07MLn3Xy87v4+V6NqZOg0VA9Gqnv9/ImHrUPZSjH
UFOIAhC9rRwOic/V1ozSCDZhP9tIQ09UfCL4TOOSU6ftalSOVsJOX40pGqq3q072yJIjKUOacwQ1
OJKf9EYZikD0oMXoye/WimAahSbl7ljR9MzhU6NHG6P5Cpqu5OfnOVA5QVGhWZM8osJ4jqi9+fcx
+2ZENBmaP8IUEaMf7i8tNFOSl4GZwvAU0LMOn1r5GQdmLzEF/DyOY1DOTk7QtckjKpe0U/59SEsm
ZjfUJgBRhGlJjH7MtKDBD/YMrXGOnpvjMyM/NYJzG37+HseonN0uBF2TPPLidpqYmx5hMsdu4xgb
b4uqKCyvagyyXdsIPZPiswqfUvkpEpw783NUzs4C3jG3g0P1bmamzs33JY9GuEzLUI+huiNMV+Eo
J3Z9a9OCpGc1PveVn838ND8K5zUqZ1csNDsS7pTqJEWoJnkEIvRqR5jui2w7kNK7BIBDDJ5perbh
Uyk/r8JPVpoOy9mdm56gmgNM104eXfAIEwPFx2pbTFKam6iTbaOhJyo+NfhMyk8ZMAuIKTEc2wHl
7JrTRQYIvyt5hEbt2xxhoin6cPprbSwNUZNwdYxoel4Rnxn5GZaYQRDqQfu8mVRjaiWoxdPLJI8i
wMQRus8Rpr+lE2LhaQmKaZpgJjdDGJ4Ceurw6eJRKj9LBOce/JxWY1pI0Gsmj2LAHMGu/AiTxS4I
oimMnmZ4a9CEeVZGJ/QMZfSE8Ql1BfToKvl5OX7OqzFdg6DfmTwaQm5CvsARJg+ScKiex+hwwr6G
P8+1tAymY3LxWYNPpfz8Mn4KqjFtfWQpg8zG5BEWyZMy1BSbrtIEpejxWE/imLy2UaROwZOl53p8
JuWnDJiX4Ofbq5x6gjYk3E1Juj55hElOGKGdR5hgKfowJuyXNFbi+vYxeFL0jOMzQEsWnxn5SWCw
nJhBfr6Vs9MTNOxGpJL2Th41vf4+l5uWELUH7xahUnZbgTSwN4C4rKKnDJ8uHqXyU4XIjfj5Xs7u
3KpT7OFDSgnV2ZA8ikXtQ5R1HGFCgnWWoncX3k3aAtyE3Wwjmp458YkRdWf5GWVdxZ0J77chs5zd
4hR7leokRagijo9H7ZQMtRnqQBSjKM/D1wXYANMgNBlnx8r+xhH9qPjswqdSfqrUaDM/Pww/qjFd
hKB7J49W5o4MtenE64gUDWP01fneRDhNIZOdxLOT0XM5PpPyMwHMC/FzUI1pX4ISkKxOHgXC9pLc
0RhBNkMFEE1i9DzJ6oZ/igQ852OE+BTiM41LpfzcSo2ShoNqTDsRVHdkiYzb0yIURSi4GUrKUFNs
OkL0gOL5p+Ve6SKmEQD3TYX0TIlPDT5L5WccmNvxc1iNaSOCbpM82uD196kMjTHU4R4qRY/HUroQ
Rznpm4Onhp5741MoPy/Gz88/6XEcDEHPafTNVWdShIoQmojkJ70mQ7MQxbl4X1Ibg5TeMwAcYvCc
johjdwk+K+XnajUaneTexuXsooeUSpgZlqTJ5FHjzmdx+n2ONEBnchS9O7BOpY3mJupk21TSU4fP
avnZIzi7+fm4G5ezayAozszGuN2RlKWvvw9pycTsQYYiEL2tF5KIq0ka4ibs51ip6LkdPgvlp0pi
NvJzVs4uTNADvVt06NMWlStffx9SboI+Pv3uUBKB6MGL0Ve/WyuGaRSanHsYnvOhnPgsw6dYjrao
0da7WTm7re6Ehz7ZZNEOr78zMtRSm7YQBSEaE6Pv7s+WBGoSmIGJPEMdPcX4DNBSjM8EMPch5tvd
tJzd6jsCkmTc7olMl5iuwsxsfA4RqmSoC1GIaUmMvk+0suGfwLW0DCT0LMWni8dG+XkZNTovZ7eZ
6tTF7elj88LX39GgPZB+n8LNVZqgFD0eS6k4LK9qFLtT8KTpiYvPKD7r5ec/wU+rnN1eqnPvY/P1
uaMZEmfboSZD7cGbAV3J7jIcJVUvYB6jZ158NuIzycsqYK6mqVXObmvVuduxeXHuaByzczLUZaj4
BNN9aW0LUn67APGwbWh6EvgMx/P1+BTKz635+VHO7ntUZ1KE+jufPjATG5+zSD7A0BxEWYrePWiv
usZzE/aKwlNATyE+eVxWys9rqdH3cnaXUp0ZZOZ3PnUnmMbaUnUK1BaiEEQDFH14HSHXfIthk3B1
rGT0XI9PsfxMMHE7fn6Ws1uuOgldKT42XxK2l6TfxzyyGZqG6G31hFj4uvAKYZqAJjdBHJ7zMUJ8
rsVno/yMI7KLpp/l7FarznXH5ovC9oL0+xSVlti0hSgsMhMYfZ3gpYXnSvMyMpdrKKQnLj5l+JTL
zzJgbsHPUTm7zVRn6bF5R1KKNGcqdzSVoUtPMKUx+jHXskY8PgVPDT1R8dmFz5z8TDBxEzU6Kme3
t+qUHpuX7Hx+0jEctWvS7yYGHSF6wFL0eCyiwqC8slHgBoxD0nM6osZnhJZyOfp9alRajUmnOnVx
e0H6XXWCadInS7/HhShkcjZm7Fc3VvIm4VlKz0p80vIzJ0eL+FlLU201Jkp16uJ2Cpk9Lx5VpN/Z
kN3UmiBEGSreF9W2IA3sFSAutg1PzzX4bJefOmAu5Ke6GtOauD2bfqd3PqtzR5wMnbLVYSgkM/+W
CsXEx+rahKQBbsJejpUxXCQ+1+GzT37GESnnZ0E1pi3i9vKdz4bc0ViGsqG8R0ksVmfF6IvXX2tn
aYyalG8cniQ9U+KzCJ9iOXrZaF5fjWlR3M7F6etOMMF9MygaDA0KURCiETH65nskZiAfUjyDZxiQ
nhQ9a/Epx6USp3tF8wXVmMridpN5dLIoLULrETrpnXVnhCiuMTMYfZ3h1ALT5WkZnM61jEjPa+Gz
lpcyYDbwU1WNqSVu504s5UVo6ARTAqECGWqLTUeIwlL0UGB0MN2axjzbt11EzzA+A7RcKT+LEBmn
qaga055xe1p0ujAcbXMCUJ2ISM0pUI+hAERRMt4WU/sGp6Zx1AasTROannp8hsSmi8MkL8uA2cJP
WTUmXdwuRCabfi88wYSl5KcIVTIU0ZkMRa/HUVbvIva2jYqeMD5l8TyNyxwvqwRnFT911Zh0g6kT
SzYR16XfUazO0Cc+BYpAlKToc3FtC9LARgHk4hjx9CwQn0X4ZOVnRm8ugat3l6rGtOGJpezb73uk
36ltT5Oh6RNMLEXvLrxbWQtwE3cLw5Ol5wJ8lsvPLfiZo2mqGtMVdz4lb79vdoLJUpu2EMUgGqHo
w+2vtbM0SE3K2TOrpudqfIrlZxkwC/mZrMbUdWKpdOdz1/T7ZNuTj9g9SGIQvS2YIAlPa6+Ipilm
snMk4GmMZcVnGJ8BWqrlKDW8TTSfrMbUdGKpfefThSH0omYuaGdlqCk2HSGKa8wURk9znBo9oYKW
wQl9y3p6tuOTxmVSji6J5nl+vp0DfYwuJ2jxAaaS9PtXnGDCSKbA6GDCNY15dg6ePD31+ISIqpef
OTm6HT8fbVzOroqgbTuf9KuarW+/DzE3i+SbTzDBUvR4rKn2/U1V46gNWNsmO9CzCJ9i+VkGTBk/
H7eTcnaJ7Ltu55ML49UidKP0+5hQQYYiOpOh6HMxXQaktNxFHBwbnp7b4HMz+dkDTHRwVs5uh51P
TpM2iNB1CC04weTijqPo8VxV24I0sk+A+USlJ0vPLfGZlZ8Zvbman/Nydt+486kI24FtzmucYAKE
6BGg6PGyvDYhaYSbhF9YemroKcVngJZpnrbhtGRwXs7uC3c+I2E7ss0JQHXWV3+CyaIYiMcIRR9+
R9A526LYZJxdswg90+ITReoV5GcZMFVwNcrZdR1RkiKzQ4RiuaNM0M7KUIeh/gkmAHB/yyZIwvMS
LMJpCpn0JBl4iui5IT5reakDpkycWuXsmgL10jOfglPzSxA6l6ElJ5hAiCYxep7k1OgZJbSMzpiC
J0/Pr8WnUm+u4addzm5VoN4sOgNhuxqhPSeYbEoRgboEo4MZFzXm4YDtOnqW4pPHZa0c3SO4t8vZ
ZQL1NmSmdz7rckfZfU/xCSZAZ8JS9HispQX7m6pGYjsLzwA9s+Izis/95Oee/ByUs7OUZN3r7Rwy
WdHJi1CfqVjuaAg0zQkmY9PTYBoIUQKL9zV1IZDyehfxcGyMYU584vjUCVLfRM1TIU4ro/nPcnZd
uaPMzucer24monZF6sgApUNJRGaSFD2eq2tjkIY2CiCnODwl9CzGp0B+rtObpfwclbPb5JAnhcid
Xt1MIHSmK/lQ3hOiEEQDFD1eltk2JA1xE3f0rCL0vDg+s/LzMvwclrPbk6BflzsaE46UoR5D8xC9
LZQADZ8LbglKw9hknDPwLKRnKT718nMXORoYHJaz2yT7vmXuCNv4TO57ciG7qTUdIQpCNIHRp/Ot
FdI0xUx6DtdSSs8WfF5BfnYBE7MNVGMqlKTduSNJHF+CUJ6hcSEKQzSJ0dMcpxaaUEHL8IRF8CTp
eQl8ivkpxKnCNlKNSSlJc7mjrAgVxfFJhJInmGa0SQnRvxUBgkyB0cGE6xr1fMA4SE+F+KzFZ7/8
VOK0grWKakyZ7Hv1zmeJ5swgtFCG+gyVHmC6LaIl+5uqRpIbMbdtZPTExedSfIp5mWFgjVaVVGNa
mW6niSnRnHGEEp2WDI0xFIEoZPNmznns0HjNm4dnhJ5b45PHZZKX+/FTVI1pYbp979wRg1BZ9t0h
IApRjon3RbU5SEObBZBTHJ4aemrxuYX83EWOWoNENaZt0u31YbtQcg5BV599t4UopjL/FgpJxMfq
2oqkIW7ifp6Zkp4EPsG+LnzW8rIJmO+3RDWmbdLt++SOMDSmD4HO0JpiKAbRiBh98ftri1gapSbn
7dqF6FkjPsE+SfSulp8cEbv4eTDVmBam21nRWaI5IajCfSIZ6jFUc4ApJEbfvI/UHIFH1c+RgidP
zyvjU8xLJU5TrKWqMVWm20nR6fBPkzsCQvQShCoZ6gpRQmLmMPo6x2tLzKfAZXA+wLSFnvX4BOCY
xyVJwAz0hLe/o2pMwr3NQtHp54oCmjMUtScRysjQBEORA0wgyRQY/ZxvcaM+RBaeAXoy4jOBz03l
p1SOSvk5qMa0zYGl/rC9/OV3HJZTIJoMzUMUBuNtKS3a3tQ1Et+IeRSeLD0vi88v4ueoGtMuonPX
945SCMUjeYuh1qangTREZlIUvTJHaeELOThG1jAZuo/7MwF9CJ/98nMXnP7djaoxrUNmVnQqNGcs
as/te864FzhI7zAUgihL0efSugBIIzsGmI9nFaFnXnzG8bmn/OSYV83PcTWmZcjUH/msEaF6hAZk
aDz5DkGUp+jxssa2I2mEm4RfBp40PbfBpwCXrXpTz89JNabUofnS7Dsbtq9/+R0WnHMZGmCoJ0RB
iIYo+vA7gs66FsUm5ezaLaPndvhUy88UEUPAfL+VVGPKILP+yGfjxmd233Mesk8wlGIoCtHbagmS
8LTyGmiaYiY9h28Zo2eV+KzEZ738rBSYMX7C1ZgO61abffeIqhehwo1PZt9zjFBShtoU9BGJQjSJ
0dMczyYAqgKYsdnK4EnSswGfa+QnibwUP6O3aDWm7zryGYrjCxBKytApbzwhCkAUZZkCo++zbdGo
jwIY2yYBejLi8wr4zMrPSjmK38LVmFoPLDWE7bGoHdrkTKeOpjyMMtQZvZvgXLwtoaX7m6rGQhyx
76KnHp8ILCVAzfJ0E5zi1Zg6T8lvmzsC80RDXpVn312GQhBlqHhtjvLyF/JwjIT0JPAZ76vBp1p+
LpOj8WpMux/5jGjO2FYo0cdl3+e7ngZDsxClKfpcUhcBaWjfAHOKw9MYKxGfaF+ElvXyMwdIJU5/
3kbbRGd52K55+V395qZGhppi0wnXsVCdp+jxsra2JGmIm4SjZyal5z74rJCftXpTKkd/thGd+bC9
ZuOzC6GNDAUhelssARo+V9lylIaxSTm7hh303AOfAn5eSY6+l7PbWnT2bHwivCxA6Kx72u8y1Ico
xLeQGD05/7VGlqaoSU7hG5oWxuB2+ATYWKFHt5ajH+XslorOLTY+ta8dcQeYWBlqa01PiMJSNCFG
36d4NiFQBcAMTQaYrqRnNT4lQC0O36vl6Gc5u5WisyH7rtv4TCGUl6Fhhsog+lhAGvTZ9Pn4OdY3
7hlZeEbouTk+N5Cf7XJ0UM6uVnSWh+1lG59xXI4RR8rQMENRiOJcFMhR8BlNjXwYYu7YLKFnAqmi
HrX8LAUkZD0qZ5cUnYvD9rI3Nzuz7xM4hRkKyUyOolo5uqjRmIYcPKMIPTfDZ4/8FPOygJ/jcnY5
0bk+bHfRF5Scmx9g8iAJxeokRZ/r6lIgjehbzCcBT56ePfjUiM1++dkiR8fl7MSiUx22e4pStPH5
7x5goil6vCywjUka3RcA/VyzDnrugc8KPbojP+fl7JSiU35+iT+vJHvtqCb7Ptv1jATsLiMxiIYo
+vAL+ta0KDcZ3xQ8rUGB+NTis4aWcp424XRazq5UdLJheyRVJBGhcoTKZKitNT0hikL0tlJiKHxZ
dQtYmqEmOYFv2UPPXfC5ofwsk6PzcnZ7h+0aEVqOUDySN2Ro1QEmFKI5jL5McG9FOE0jMzJREp4R
elL4zAT06/B5GX6ey9ldK2yXaE6Il+p9z2kkX3CAyYEVE6enMXqe6L0RE8tQmZoYMV5LzxQ+IVgC
LBTgspeXFE4T1Ziqzy/lzysFXztS73sS254lDIXOL8H4kmF0PPGqRj49D08lPXvwuY38TAJRKkcz
1ZiSYTt/Xqlp47Mr+z5D5QROYYbCECWweFtGC/Y21Y3mNuTgGUXoeUV8VvBzq3D+DaCbhe2rNj73
PcA0JZYHSUhlkhR9LqcLgjQieDGfBDxl4vN78LmWl+7wezk7cdi+w8YnEqNDW6E7HGAytaYjRDGI
8hQ9nuvqAiAN7hSAbq5ZjJ4K8anF5yr5uRk/jx9XVWo3PrPnlS6SfcdhGZGhDeeXIhQ9XhbYdiQN
cpNx9e1a6PlN+FTLTy0/f49ANab155UkG58QL+O4HHNMdoDJY6jo/NLfegmx8GWpLWRpgpqkfxKe
AXpS+BQH9AhRFUDt5inPT6ga09qNz6/Kvk8j+QhDM0IUhmhYjJ79762cpllmBuYBTIPSU0NPNT6X
yc+1vBwPI9WYms8rLXvtaGn23dj1nEInKUQZNCbE6GCe15aaU4XL6JyIbVR6fhU+O3CZBGIMr1A1
ptXnlb4u+87telqctKUmIjNxKfpYNFIZWcHAWCM/SR6eUnp+Oz7V8lMkT4PVmNrPKwlE6KLsOxOy
FzAUhiiBxQqOrmw0wyEHz6iBng34XCU/m3k5NZ9WYyJFZjUxAaRumn2f8E16gMlhqDt+NwodAr0w
RwPqF3QpoadCfG6JzzwuV/FzXo2JFJn6FzU9RRnKFNVn33FY0jLUY2haiB4Bij4X04VAGts2QL0y
8JTRU49PCJYRWgr0KOugw2u4GtOCjU8FMMuz75LMUYyhiBDFjy/RPHysqm1JGuMm5ekaium5Ep9V
8rNcbirl6akaU3GYrg/jQyK0OnU0xtg0kmdDeZehPkQLKfrwPMLu6hbHJufuG9oWxmiZ+GzHZ4X8
XMnP87vwi1NHvEEwag/vew7BiHbqZKgjNT0hikvR21oJc/B1qbXCNAlNehLAVE7PInxirAwSVQHU
an5y5mY5u+UnPovOzIdTR8yJeQqhBQyVQTSN0ddJHk3MUwkxY7Ol4amk59b4VMhPGo9aXn7c2+Xs
LrHxqYraoQA9j1BOhsYZCgjRgwrTJRh9m23c5v8V5Y17BmRdQE9OfMrxGYPlJeQnLVffqzGVn/Ck
w3iFCIWidjBozyKUlqEOQ5NClJKix2MBlQbkHaRMP7MYnjw9S/AZ1ZpN8rOdlx/DP9unjqpEqPYU
/ayTieRNhs6J5QtRDKIUFDs42tMCtMZcPCtznA7dJwPJiL4weq/AZT8/jx8XcXJNWrDxWfniZsl7
m1Pohc7RewwFRSZN0eeKuiBIYzIX9HLNYvSUiM+vwWc5TxHzQTm7/c7ML35xs+rVd16GZs8vAZwL
UPR4Lq0LgDS8P4A65uAZoOdm+NyGn6xDCLejcnaXSB1pROhwkxPDZT5zZMjQEENdIYpC9LZUAjR8
rrHNUBrGJufsW66lZwqfnfKzX24G74fl7NZvfIqOKwFicu2r70bEPiOQDUEfkShEo2L01fnIzCBo
KWyyM9TBs1R8VuNTQst9eTouZ7cg2R6I2iNM1aaOuG3PCUJpGZoWogwaw2L0bYZ7K8ZpHpmRmRDb
Pnquw2eb/NyGn89ydtXHlwpSR5Uvbmbf22RC9lDiyGWoiypciiowep7p1MLT6miZmDYPzxg9OfE5
7s4E9I3x/H48fd7OqzH1E7NEhC5KHTWcAfWUJgpRHGC3ZaMWkUUc5Bv7QSB7z0hKz73wua381PHT
qMbkpYbSqaOVL24O2Jja90wjtIah7vjdiIKiTo5u03iGYx699GzD597yUy03zXuiGtNlzswDYlKf
Ohp2ssn3GZQchqaFKCtFHx6s024tJH5Bpww8rUGF+FyCzxr5WS437XumGlPHe5oKYC5JHRWfAbW1
JCBEEdDxFD2ey+lSII3uGqB+rp2anrvhUyQ/Bbgs1qOpakwFmnPD1FEuZhcm31MMRSF6RAP0x7ra
mKRRblKuvmUXPbP4DLMyhk+F/GzXo9pqTD4x90odQeoyu+05Q1vgDKjLUBFEg2L0xfWI+8tbApus
fxKe5qhGfMrxCaGxSH7mcZnm6c/7uJyYec1ZlzoCFWd78t3ipC01XSHKoDEqRs/+R3KW9KN7ZkFs
++hZgs/LyU8ahzxPf8rfbF+XOgoG7UWZoxkqpzI0wVDo+BKKtCxGX2d5NDlPNcQMTpeHZ4yeJD6T
EX1lQF8C1HKe/o6qMaWPJ22TOgrzsiRzNI/kC84voRDFQabB6Nt0kzb//2ho5FMgc8+og54741MC
VL0eRe4D1ZgunjoKB+0rku8JhrrjdyOGirclVByP95Ay/1TMo5eeffiUwbJGfur16PBeUY2p5k13
UdSuVJylyfcZlByGpoUoK0UfHtskibItwmvQJwNPa5AUn8vw2SY/V/FTVY2JT777KnX5+aUsQlUy
1NaSgBBFSMdT9LmkLgrSoNBF3Vw7NT058bktPiNAXcfTaDWmdPLdn3LP1JEgcxRJHKUYikI0RNHj
ubYuAtL4DgHs6RvK6cnhE+9V4nOZ/KTxCDs8qjGpo/SS5PsWr75zmSMukp/D1WeoCKK3pRGB4WOR
bUnSODc55yQ8zVFWfHbhs1B+VuBSqEcf50C3PPC56b5nafLd4qQtNV0hyijMoBh9cf5ri1maoiY9
BWK6nJ6r8NlFy149Oi1nxxOz5sBn874nuMUpSr7zobzPUOj4Eoi1uBh9m+LWWmgqYGZkpjw8Y/Ts
xWeYlevkp1BuDjpey9nRxOQ1ZxEwIV5CGISzRGOQ7XB+SQxRCUZPM7229Kw6XCZmFcBTTE8Kn6lO
DL2IYw1Q9Xr0dJ+rxkQDsihqr39vExacE7oZEfuMIQmGuuM3GwZgt2UjFpE1/Is3+vNgDjX0rBOf
uCS9mvxU69FcNaaaA5+aqL0h+U71BmSoQVeIoQDtSIoq5ehmjUc56OGamQbF4vNK+NyRn3Q1JjfM
r4naEYEZ5OUOyfdYKO8zEozUaYo+VtEXgDSkgVGnHDyF9NwKnyJaduDSNWCrMbUk3zd9b1OA0Lmm
jIXyvhBFIRqg6PFcThcEaXTzAPbzDaP03BafV5OfAj36s4fmXCtCiT48czQjW0CG+gwVQTRG0eNl
XW1P0ig3Od8sPBvoOe6GO5sD+hKgKgx+WjSnAph7nF8iOkMyNMhQX4jiEA1T9OGb8K9qGW6S/oBp
AT178RlmZZn8FNAwBNjPcnaA5qQVpShqD0pOSF0maTkBWOT80hQ9PkN1EL2tlTgGX9faIphmoRmY
JQ9Pc5wWn5MBojeBTwiNy+Qnz8+hw6ic3SZH5mXvbabOLzExOxPJh2SoS0BfiHL6MovR11nurRCn
GmTGZoOs49KzWnwmJWmr/GzBJWgwLGe3zZH5wn1POEuURmhIhsbPL0Eqk5Cihwqj59neGzm7FpXZ
2RXwVNPzCvgU0bICl6jHrZzdiqh99b5nK0JZGZpiKA5Rhlu3FVQkIGuJiDb+U2AerlWQnqz4/AJ8
lshPnp/3e7gaU0vUXrrvieGyCKEBGZpjqG9wt/qniynfW4TfqE87PVfjMwrLLvkpEKiPe7ga06qo
XbfvmTruSSGUi+QzDBUI0SNC0e/haEz5wl45eIboORthuuvxWSY/K3BpeCSqMbVF7bX7nilacrue
cxyGc++IEMUoF6Hoy0q6GEnjOwa4p28ZpqdKfCbxGWbl1vKTAuxrNSYXkCVRu49H5UtHcsHZcATU
ZygA0UqKPjzD3l0tzk3OG7B0TEL0XI/PXvm5np+nVzl7ovYqybksczTB2zyS1zPUF6KEFL2tjygI
n6trG5TmsMnOgNhuS89t8LlMkJIeZjk7CVKLku8N55fwHFHL+SWfoUKIZsToaYZba4dpHpqRiQTw
cVPNzQAAH/xJREFUFNNTgE8UlWF89snPLC4/O97K2eUlJsLHun3PcNAOY1WD0PlAhqGIEKUgmhSj
HxM9mxyoMmCGp4TMa+i5Kz4vJz95gZquxvTVyXcJQiPnl+Z8ARiKQZRg2G3RKKFngmQuz3sa/SDM
wbUyDXTicy98lsnPFn5+AHTZaSWEjsqgHdzhVLy1KZahPiMxkUnH6DI5ij1oReOfDHrk4FkvPpP4
DLNSRtQSoAIeH+Xsuk4rRSRnffIdxKqhN4UytOP4EhXQPzwO2mvzFkO2Cp599Mzjc0/52RO+jzp+
NBKzbd9TKUJTCXkSoZYMrWIoA1GehwVx/YIWFbuoH2Cnp+eF8blz+D4UqKNqTDvve5a/+V6JUD6U
9xkqgugRjc8fi+pSJE1sEuCuaXiaw7T4/Fp8rgLq73FMqjFdbt8zHLQTCMV759QrOEYPCFEYolEx
+nSNu7e0BDdJd8S0gp6F4jODzygsRfxU+EwMbtWYLr7vuTRzJJOhGYYKIRoWoyf33BzKlqQmP4cA
nmJ6duJzufwsUZvTjlsW/vr7nhAGSzJH33wENEnA06prpKmCmbG5IOsaerbjMy41W+VnLVBn5ex2
3/eMKs6Sbc+m3LvHP4iPHBdvy0TCvo81KCOqkpfxWTH7DDyV9GzD53byUwvUZzm7rfc9g0F7W+Yo
kHs3OGmQBRCiAJgoKXrcl4taQtZwT9D4D6aBp2PwT+GzL3wP+LzcG9WYdtr3XJU5YhDaI0N9hhIQ
5ZiolKN7tgjSQR/fbDU9m/DZKj+1anPUQVVjWrrvKVWcKC2vfAQUAR1P0e/kaEwMw14r6NmMT1BX
LpafeqAmqzGFYnSIqZAIDSffcVpe9wgoHKdHKPpcRpcGaXgXAXfMwtMcpsVnIz5ro/cQLQsE6Vs1
plWSE8sTYWxUx+yqxBEvQz0dCQnR6lLKj/V0IZKmdl+V7KyhJys+u/DZKz97BOlbMZEAH2Op9lCI
vipzxO568jI0w1CXXLAUvS2OIAn3J2mKm6S/AJ5ienLic2t8ttHSN/koZydJFIXC+OBhpYUIJbuN
gQxDASHKQDQhRl/9/9oGLM1SMzALZFxDz+/DZ6MgjXQEqjHtd2K+I3PEIlSbe/f4B/GRgWhOjL7N
cmttNNUwMzZZOTyV9KzBJwjGSvlZJEgHHT/fcGK+J3Oky70bnLTTRp4QxSBKkEyD0dNkr00ysRSX
mYkxe9fKNrgkPq8gP4NA/SkDZkxyFovQIRjhHNEEYfSmZ1CG+gyFonlSih6PhaNXkGXsy7XAxwJd
NqLnZCDbK43o64gqA+qonJ0GmJDkjPFSvO2Zf+XIQCWfN8ozFIUoicQyjm7TQkBHnXw7PT0l4nMV
PoNE7QXqXzk7Seao7vhSPHMERuKCtzbpSN4Y8RmqgWiEot/J0aAUht2y8DSHt8anMnrfLXw/Dmk1
pvUFPxMxeylCa44vOQSD4/QQRZ8r6tIgje8h4J6AZSs9q/C5hfzs5meqGtN2maPGF98nCA3I0EKG
4hCNUvR4WVoXImlu75XwRkxL6MmKz/3xqZKfYqA+qzH9U5mjKoQGZKgVygMMFUL0tiqiINyfpDlu
shMI4GmP68TnUnz2ys+I2rRMngfpJTF6THKWZ45QWioSR+JT9K7QRCEKcy0uRl8nuLXlME1DMzIP
ZOwaBelJ4zMf0ic2P1fLz6wgNcrZQZIzkjmqLviZEZyKXU8jkq9hKBLNU1I0K0bf57m1JpqqmBmb
DjPfhp6N+FRG7yvD91PPqZydJEbfM3PUi1BLhoYZmheiJEQfK0UFvsH3ID21mJa5qTvgGaLnpvgU
wrKPn+cOuhrTP5A5Ks+9B9NGiBAFIcqBSyVHp1Pv1gKfCnTxzcL05MXnVfGpkp8KoNLVmK6SOYJp
mU4cGRE7L0OzDMWi+QhF1XJ0yxbiOey0hJ6s+GTwCaMSBGOv/JQI0o9qTFWSM8ZL9bZnOnHEobLi
+JIvM+E4PUDRb+VoUAnjbll4BunZjs895GeIjSGnd4CWSc4wL6Xbnu25d3PPM5w2goQoyLgQRZ8r
6eIgjW8hEJ6AaYKeAfHJxe5N+FwtP2OCdFDOrjH3Xn18qQKhZHdUhuYZSkA0StHjZUldiqS5rVfG
G7Gtoec34rOQqEGTHwiYEYHZnznKxOxXPL6EAJIh49/6iILwubq2RWkOm/QMkLFn1EXPInxWR+91
8hPg5+8hrMb0v+NLVn8VQxEhSknRjBg9zfDXNmBpnpqReTDrdnpuis/l8jMuSP+qMWkkZ2/Q/l3H
l+yskcdQNUSTYvR9nntrwqkKmdH5NPB0DJTi86r4lBE1gdi/JFJVbTqMl1LFmaLluuNLNiVdnYlD
lKGYCqPn+U4tPbmalrnJQQffTE9PVnyW4BME4wXC93vPrJxd4XHP2m3PJC1Vufc5KA0Z2nJ6iZOi
x2Ol1MjHUv7FW+RjNcHTHC6O3QvwqZSfC/j5LGdXlnuPyVL5tueQi4rEER/JRxnqC1HA4m5GE7GU
o9u0GNBhr83oqcCnPHovhaUooH92JKsxqYL2+m3PqxxfUjAUo1yEot/L0agUxv0AyxJ6/iP4XBTQ
J6sxbfvWZmfiyNgMjYTyAENlEA1S9LmELg/SxB4C4ZqHpz2uE59F+EywMgrL+vD9ON6qMYUkp4qX
2m3PfY4vhdJGntAEQnVirzNK0eNlLV2MpMm9V8YdsS2i59XwWSs/ReH7uef0KqfoHc2rvbV52ROg
EEQpisY5+FxVG6M0iU16CsjYNZLT80L4XC0/3Z63cnZrg/bMtmeKlpLjS3PiRVPvrs4EhCglRdMY
fU6Rn0fVBNSMzIOZl9FTJj5L8CmN3pcG9IpqTEpehnG59/Eli3QeQ/NClISoBKMv89xaI01VzIxO
1wHPGD014rMAn3Gkrg3oQ9WYVLl3DKr/xPElJ2vkClEQohTFVBg9TXdqkrnFtEzODXr4Zo6FNHRX
4HNR9L4yfD+O4xhUY1IF7cEI/auPL8VkKMBQLJqnpeghx+hg7i1b5KOhPpX0/B8+O4n6e/wsLlYX
79r6+FIkbaRgKAxRloi3pbPFpmZti0Ed9gIMS+jJxu5F+NxDfkZpOej5gWCIBO3CNJFYhNYhNBDJ
JxmqgmiIos819IUgDath3DEPTzU9/wF8Fgf0w3J2GxyY74jZV50AtYZcoQmE6niYHqPo8VxMXwDS
zDYC4YuYZuj55fhcLj9nPX/l7DqD9oTilMfsIoRqZaiCoQRE4xQ9nqvqgiBN7r8y7pDtNvTsxOcW
8jMV0M+qMemCduG2Z1vuXbbpWXUCFOIjAdHbcghz8Lm8NkdpEpv8FBJ4hukpE58MPveRn8Xh+3G8
VGNqDeP3z73zm55ThBYxFIcoDrUkRp9T5OdRNgE1I/Ng5r6Vnp7/LD71RH2cA91y2xON2StC9hnA
Gk+A+ohEonlOih4sdJ157q2ZpipmRucD7XPS0xzm6cnF7iUhfbv8TBPVKGe3wStHeyaO9joBCtKR
hOh9ici497EIpURV8zI1swqeCXr+a/jUwZIl6ms5u9ZtT/ErR90IZSP5eCiPyEwCoiS4BEG9OfPG
LfIBUR/AroSeoth9JT43Ct+PQ1GNKb7tCaIxFbMLEkfsZugahsISMxKgq+Xo3i2GdtgLMeylZyE+
YSwukJ8Sor5VY2rd9ux4712QONrkBCgCSGxL9IhR9Ps5GhXFhF9eetrjF8DnvvIzQtS3YiLd254J
EdqYe1em3k3GeQAUCtEjStHnEvoakCZ2ExhXgfTU03NbfMblpw6WgNFHObvebc+ECK3KvZMIDcnQ
HEOVEA1T9HhZSxclaXIXlnJXwDNMT158tuJzhfyUhO/HMShnt8PppaWJI+Eh+vjpJRtJSKROgTFB
0Yd7borGluQmPQVmnKNni/jcD5+Lw/fjOH4/y9lt8dJmIo7PJ45kh+jDMhRiKIArRoreVkeKgS8L
bDOWCqgZmUcEzzg9d8Lnmui9mKiDcna7bns2Jo50qXdbhjoMFQhREqISjL7Mc4hmS3+EBbOBDknp
KaZnMz7FUrMUlmOjnxEVdt32zCaOiO1NYeo9zlCVEOVDdBVGX2d7aSVE1fIyNTHqkZWeQXrW4nPz
6F0Yvh/HvRrTntue8sQRlSGawcvYDI2E8mmGwhKTlKKHGqMfE0+ao8o7W+R5Onhm6FkvPmvwWS4/
leH7cdyTSDtse7YkjjTvbIplaJ6hFERZIt6WTlsc3k3JUYt9BtgLMayh53fgs11+zo1m5eyEYXzD
AdB0/TohQqsYikAUg1yEos8ltFl2SNvC8CYc89JTT89KfOZQWS0/g+H7o+tRzi7Gy7Di3O4AqAyh
VryeOr0kFKJHlKLHY+V8GUcTspdxFUhPZ/y6+NxEfpJEJasxKbc9OxJHtQhVy1AFQykyhin6soQu
TdLkdoGanVvR8zr4XBW+H8e5GlMMjvUvbRbsemoQGpWhSYYCzCKk6G01hDl4RZLmt1m5GTTwjNPz
mvhMsFIIS8fv9U2k0jIh8sRRcteTRWggkq9iKCREOYimxOjrDEd6mrqWx2ZkGtB8CT3Z2F2Az63l
ZwCy53J20UT7ipi9/7V3NpK3ZKiAoXqIZsXoeZpDM1muiaAZnEwFzwQ9heLzKvhsC9+PI1SNqfr0
Uudf7dDkjcKnlyy6+DKTgCjFMRFGXyd7tHKeSomZmBX1AOwcE7H43AKfm8hPALIf1Zj+rcTR4tNL
DiQBQqISk5Sihxijb7O+t9BTalCpeEofPOX0vDw+O8P34xhUY1ImjsQiFN8KHcNSkTeaIy94eskT
msB+J7YlGpCix2PBFAvHHhZyLfaZcK9iekrFJ4dPgpQwFrWsjIbvg65BOTtd4kgsQpnKIYq8EUvK
oAwVMRSEXISiXRzdo0VpTvghpu30LMXn9eQnCNmfL00cLUu9x8J1gKFCiAYp+lxBXwnShAxmXBXw
DNNTF7tfBJ+l4fvx+1eN6TsTR4tS7/aWp0EeV2cikTqz1Rml6PFcSl8B0tz+AeUNGefo2SM+O/G5
ifycQPbnKFecasGZDNk7Uu/BrJGEoRREMxQ9XtbUBUma33flZsCs6+i5Fz73lp+EIp2Us9vmjaMK
vbn29FKeoSBESYqmIPhcXpujNI/NwCyguW9WQc+98SlmpTB8v3XdytnpEkfiN44ufHopuuPpy0xQ
Y1JSVIHR5yySqWRNQ83YVDJ4JugZEZ+Xx2dD+H4cL9WY+mP2pbueDaeXTBC6DAUgigCKhKgKoy9T
3VsrToXITEyJumSlZ5SevPhcj89y+UmK1Mcxpj1K1TXuespS78EDoPagUIiS8fzTRcu8z0Uom74A
l9npYZ+09GzEJ9e/245oTZdVzm6bxBGjN8dUlETslz4AGqBoBUY/p9+5hT4h7oRYttNThM/dovcq
pL6Ws1Om3r/19FJgy7OaoUSYTgf0d6eI35VblO1aeJbR85r4FLMyH74fx3s1pj1i9uQ7m992ABSi
HgfRCA3vy+arQZoQxYSrBJ6OgVR8duPzKvLzeH+Vc5vEUS5k/98BUMQ0iMKvBGluN4Hxxmzr6LkX
Pq8nP9+73svZhcP4f+v0UmTLM89QLUSP3BbnV4A0uw3L+YvgWULP78WnFKkfPUA1JnHMvnTXU3V6
ycBd8QFQgFfcTmdCjD79j+QkvS2LzcgkoHklPZXicz0+d5Cfx7AakzCMv9LpJVZtLjoACtKRg2hS
jJ4mEUxU0yTYDE3UBM8oPTfCZ4v8VPLz+AmfoA/r0pJ3NsdUZFhpqE0+beQw1EsaSYQory0lGH1O
dGsLaSpjZng+2CNNT3nozsbuAqqu2hFNRPQ/2ph92a7njqeXojIUZChGJlKKHkKMnuZ7tkKgqoGZ
m1kIzxQ9/4dPpy/TNSxnt9M7myVxfAChfCSfCeUhlUlBlOWWGqPvM48a+LQ6TMqehjshllX01MXu
ZTE9isUEK3NI/TnGilOJy9Su5/6pdwt12QOgLlJwgclL0eOxapqi8F4yei36abTwzNFTKz63wGeD
/ETD9+N4VGNShvGoCP2q00sxGYowVA3RCA17Obq6xTlOeErgGafn1+OzRX4ejyx8dcyeFJxZWF79
AKhPLkJfRin6XEZfCtKUAGacMdsl9NwHn/LovQap83J26pg9Q8vC1DuN0IgMFTBUC9EjtcX5ZSBN
7hxw7iJ4JugZEZ8afF5Ufppmz3J2ytR7gQitSr0r00YmCO3DS77MhIQoBdGMGH2656ZY2AQ7ruQU
oHmWnm3icwN8ZuRnOnw/jnM1JmkYnzq9BHOxEqGRSD4hQzGG6iGapehjiiM/T0MTYDM0jwyeGXpe
GZ9qVIqQ+vom0qIiIbmQXYNQaSSfYqhGiLIQzYX0H/McotlETQXN6GyoR1p66unJxu4CfG4lP12z
czm7/6Xe0X5HhsYZqhOiAWmpwujrbPfWilMtMhOzwi556Rmm57fjU8XKYdd7NaaNdj0JWFbmjazN
0FgoL2AorjADAboWo+dZT030iBpaph+B+yCWKXpqxacGnxXRe3P4fhyfxUTEu54ZWqbjeBVCC2So
gqFEmM4G9HefgFvgETu34EfUwrOOnpvhcy/5Cbl+lrMLh/FfkXoPILSQoRBEQcQFpOjDbaP9zK4W
hjvjqJCeJfS8Ij4XyM9jVM7u33jrve8AqJM0ssmkFaJhiv5LHE3IYspVIj09A7H47MenXn4mJOmo
a1DO7h95612ZNorLUA1DuRg9TNHnEvpCkOb2EzhvzHoNPa+Jzwb5OTYblbNL4XJpyL7uDL0jQ9MM
BSHaQtHjZS1dnqT5fdgKdgJmCXpKY/dt8VkvP4/fv3J2IC7ju541IbuAlZEz9CEZmmYoJkRJKXpb
FBkIXpWkeW4GJkHt96NnLT4JKLbITzR8P47bHuiaXU9GbzJycyIrhWmjkAy1B0GGFkA0K0ZfJ/lr
27JUQs3gVDp4uibr8blefrZJ0lk5u1QYvzb1vu/hJY+RgMqsgqhAjL5NdWuLaSpkZnxGITzL6PlV
+GyQn/e+ezk7aRi/OvWu2vO0NkPXMRSN5iPKUojR04yPVs5TPTFTU+M+30LPMnz2yE8mfD+O12pM
UsFZknonqNhQNyR8eAlgqEyIhih6Xx0VsJt97ehnFYJS9CzCSwFPx+BC+NxMftpIfZ4D7agbgotQ
nKv1f3szkjWyKelqSFCIotyhA/qHV8gx0Dp5iLfwpxLDcw09ZbG7gKq4aYP8fO2zy9mtE6FL/nAc
jVBHhpYzlIVoCIadHN2lJXjOuGK2hfS8CD73kp+nvlM5O7XgvFreqODwkoUdhKFaiMYp+q9wNKWE
KWcRPD0Ltfi8Hj7rwvfjeH+Vc1215Pa8EYnQGhkKyExIiHIxeoKiL8vnq0ia3kHgJgCtS+l5bXzu
IT8PpJzdQhG64q8ezYFVdHgJYqgcord1kKDgfSFdGqSCrVd2Chk8q+jJx+4afF5Cfn70fZSza8kb
lcTxKoSGInk7Wk8zFBSiJESTYvRliiM/T2MTYDM2D+pQTE+t+LwaPnXh+3GMqjF15I32L70UiuRt
hpp8wRgKQ5SnqAB/L6trQ5aqqBmcDPZADD0bvfjcCJ8byc8DLWd3obxReebdlqHxUB4CJKwwWSmq
w+jLZPe2CKdSZGYmbYVnBT1l+MyDcrOQflzObru8EaErezLvwcS7qzORSB2M5mPxuRSj50lfWglR
S3iZnZ9wqqenWnyW4pOA4jL5efweP2MMbpY3Uhyh5xFaIUNlDEUhxEvR47FWypQjworTw6vhaLbo
w8XwXEPPcnxeWX4efyH8Xn9l8zsOL6VyRpDGJCEaoWE1R5GHr2zxj8B4YrZJev4PnzgqZ6wc9s3K
2eX+wFFf3mjt4aXwhifCUC1EwxRdzNElLQNvylcEzww9Q/hU7Ymu3hLN993K2e11eGnF+U9rIBTJ
pxmKCVEuRo9T9LmIvhikSdXLuYPW+9GzGJ998jMbvh/HMwv/v8NL4Ui+mKFyiKYoejyXzheBNL9d
QM4gg2cVPS+Bz+Xy87DL2V3o8NJKhJpj9iCkMjEhSkL0tgIyEHysocuSVLLNSk+COuTp+T98sp18
30s5u568Ue+m50XOfwIMrYBoWoy+THIoZmppEmwGZxLCcwU9t8cnTMCU4WvXqRpTR96obtNTlHk3
tzzDMtRlqEqIBpiYF6PnmQ7ZfLKmg2Z4PtxFID0dA7H4ZPFJIXFn+Xm8vYl0mZfeRZl3HpRhGerz
TyhEA1JUidHX+e6tHadqZKbmlcJzDT3L8bk6eg8y9a2c3UXyRvseXkrljBCRyUGUBpcao+d5T034
kCpaCh5CeEGmSXq2xe7t+FwhP49BNaaVeSNBHL/68JLDQAlDGX0Z2+S8rZJa2dhCPUWLflDGD7Pd
jZ7F+Nxefh6DYiJdf2TzEmmjoAxNM1QL0UhA//ALun5FSyB+ATwz9Lw6PgtQCRoOytllQvZ/5/CS
ycEsQzEhSkM0iMJ/j6MpcUw5g8bL6Pkv4DMV0g/K2V3/L71/xflPjKGcukxQ9Ll8vhik2V0Fzh+1
TtPzX8Rni/w8xuXscrRs3vQUZd63PP+JwpEL0f/WQRyDj3X0NSQV7MayU+jguYKeMnxSSFwrPyeG
k3J2OVrCGnKnw0sGzyrPf3oUAoUoCdGkGH2ZIj/NsibgZmga2KGanmrxKcJnUfReID+PaTm7AhG6
0eElHpRhGSpiaA1E02L0NI1mruomomZ0LiU8l9DzAvjsk5+HVc6uLW8kiONphPKRfFyGKhjKQZTE
mAijL3MdwhkFTQnN+Iy4D2SZo2db7K7BZ1/0zjJ1Xs6upNLn/mmjqrNLNk0gPqLRfECKHlqMvs54
b6041SMzNzPhpZCeGfF5cXx28fPeZ5SzW/3G5jqEhiL5ZCgvFqIhKXr3KoHdaBVKnlMHS8lzGDeJ
9Gyn55fj02bqs5xdJpfU+mfjWjLvIRmaDOVBjcnIy4gUPR7Lo1w0drEv1+KfUg7PND03xicFSoJ/
hfLzOJ0DXfrG5qrMewihmVBewlAaojEWdnF015bhO+ULGi+j5zp87i0/D7ecXacIXZJ5jybe48E6
xFA1RBMU/Rc5mlPGnLcMnil6xsTn/vgskJ/nznM5u6/OvEuzRt6GZzbtjglRMkTPUPS5br4YpOkt
BXIC1DxPzwrxuQifG8nP4+NVzm/OvF/wCH0BRG8LIEHBxwr6GpIqtmLpOYTwzNFTHbvvg88GfmLl
7L4l877dEXqVEGUhmhWjL3MI5lnVFNyMzQN7CKRnCT3/VXx+dn6Ws/vqzLs88Z5jqFKIBpiYFqOn
eUSTFTcVNaOT4S4K6Zmg51J8UqAk+CeWn8ewGtN3Z97nyIon3lM5I0Rk4gKTlqI6jL5MdiinzDcp
NBNTauGZpWdUfM7H1uyJrt0SHZazu1jmnQViZDM0IUM1DIWj+RBExRh9nfLRGnlaQMzs3ITbcnpq
xSc9UIVPvfw8JuXsLpZ5V76vWXOEXsdQBqIBZBVg9G3ut5Z+VCUrRY9i/DDbLD2/Bp+L5ecxK2d3
tcx7G0LjMtRDLIpHRl4GKXpfKx2SsZF/8Rb/kJSnCJ5l4vPS+Kzg5+9hlLNbn3mnAnYtQsMyNBfK
o3E6FaNHKdrK0U1bBu+cL2hdTM+Y+NThc9fo3ej8K2e3OvOuUJtKhIZlaBtDOYgmKPpvcjQnjElv
1HwhPTfEZ5qUAvl5PJJIBdXm9zlBr0aoE41LXkMqgGiKos9F9NUgTe8osBMI4ena/Kv4zELVdLfK
2e1bbV6J0GAkn5ChEPhAIcpCNEnR42U5fRFJJTux9CSwQ156dtNze3zKYnqznN0WETuHyr7Ee/3x
T5iNLERvP/4kAZ8L66IolWAzOJESnll67otPComNMf1Ln1fOLnlMSZA2aqgaUvIWkoShHERJkqXF
6GmiQzVbcZNhMzob7gJZVtJzS3xuJD+Pt3J2jSJUEMe3IXQxQ+FoPiBFRWL0bbZDOqegaaGZmJNw
2pqeF8Fntfw83t9E6hOh29Wus3c8zQ1PZ7/TAQnK0EKIqjH6OuejtfK0gpjZydXwBKzaxecifK6S
nwdUzm6LFzYbELpMhoLMIyEaINZtbdSgbrgaBY8qZaXoUYyjCp4LxOdl8ZmA6kc5O1hvbpM2kibe
g0mjNEPBOJ2Rl+Etzgo5aj5q/xb/nJQnaFxMT3XsTnOVw2qeqpnOz2IirS9scmqzYcvTjuRTobzq
5BK+JXokKForRy/TMoQnfdvo2Ss+ZbJ0Q/l5jMvZZUXoNnF8CKFlMhRkqFqIHhmKPtfMPwbSpDRm
3XXwzNHzf/hkO0fl7LIidEHhpV3OLgkYSghRimoZih7P1fPlIM3vKdAzoA5r6XkhfHbykyhnVyVC
RVVDWs8uZfY7QYbCEO2k6PGyjL6KpJq92DJ2YoY5ekbFZwM+d5CfM9NZObvsMaWrHP+skKEOYUE+
wludrBS9LYUsAL+BpBpuxibCXRTSs198boVPASknnbNydkVVQ5Yd/1RH8kkZqhWiAYgqxOjrRIdq
toYmw2Z4Ni080/TsjN1r8dksPw+znF1ahC5IG8US79FIvoGhuBANEVEjRs+z3dpWNNUyMzMp47Q3
Pb8Rn6T8PMxydmVpo9I9TzFCPRnaxFDq8CeNLi1GT5PeWztOS5CZnFwOz2J67orPjfjplLPb4ewS
fVL+Ysc/MYnJQjRArNuSqEHdaBHKnlQKS82TKEfQOE3PCvEpxOfG8vPZa5ez26PY/HxrU5t4r5Gh
GEPVEI1J0btjj2Ls456gJT7sGnjm6NmHz9LoXUjKSadTzk7AVQUr/4Hjn+BeJw3RIApL5eilWgrz
nDNqvZSeX4rPKFTdcnZVZ5e+7/inDRsdQ0lxmaDoc6n8gyDN6mPSHzYX0LNGfDbgUwFKpfw8kHJ2
TGx+kbNL9o5nlQwFGVoB0RxFj+ei+QdAKthYYKdQwrOSnmLxWYvPvPyEUPv/bm2XBtYYflwAAAAA
SUVORK5CYII=
require "stumpy_png"
require "json"
require "progress"
include StumpyPNG
GOLD_BORDER = StumpyCore::RGBA.from_rgb(161, 126, 33)
RED_BORDER = StumpyCore::RGBA.from_rgb(164, 0, 22)
BLACK_BORDER = StumpyCore::RGBA.from_rgb(0, 0, 0)
CARD_SIZES = Hash(Int32, Hash(Int32, String)).new
BORDER_SAMPLES = Array(Tuple(UInt8, UInt8, UInt8)).new
def compare(i, v, dif = 5) : Bool
i >= (v - dif) && i <= (v + dif)
end
def is_gold_border(color_tuple)
compare(color_tuple[0], 160) && compare(color_tuple[1], 125) && compare(color_tuple[2], 35)
end
def is_red_border(color_tuple)
compare(color_tuple[0], 162) && compare(color_tuple[1], 0) && compare(color_tuple[2], 22)
end
def find_first_nonblack(canvas)
c_width = canvas.width - 1
c_height = canvas.height - 1
(0..c_width).each do |x|
(0..c_height).each do |y|
next if canvas[x, y].to_rgb8 == {0, 0, 0}
puts "found nonblack at: {#{x},#{y}}"
return {x, y}
end
end
raise "No non-black pixel"
end
def sample(canvas, cord, size = 30)
colors = Array(Tuple(UInt8, UInt8, UInt8)).new
(0..size).each do |x|
x = cord[0] + x
(0..size).each do |y|
y = cord[1] + y
colors << canvas[x, y].to_rgb8
end
end
{
(colors.sum(&.[0].to_i64) / colors.size).ceil,
(colors.sum(&.[1].to_i64) / colors.size).ceil,
(colors.sum(&.[2].to_i64) / colors.size).ceil,
}
end
# Only supports 1256x1714
def parse_file(filepath)
name = File.basename filepath
canvas = StumpyPNG.read(filepath)
return if canvas.width < 1250 && canvas.height < 1714
x, y = find_first_nonblack(canvas)
corner_color = StumpyCore::RGBA.from_rgb *sample(canvas, {x, y})
# corner_color = canvas[x, y]
color_tuple = corner_color.to_rgb8
puts "#{name}: #{corner_color.to_rgb8}"
return if color_tuple == {0, 0, 0}
# if is_gold_border(color_tuple)
# fill_corners(canvas, GOLD_BORDER)
# elsif is_red_border(color_tuple)
# fill_corners(canvas, RED_BORDER)
# else
# BORDER_SAMPLES << corner_color.to_rgb8
# return
# end
fill_corners(canvas, corner_color, x, y)
StumpyPNG.write(canvas, filepath.gsub(".png", "-2.png"))
# puts "#{name}: #{corner_color.to_rgb8}"
# fill_corners(canvas, corner_color)
# StumpyPNG.write(canvas, filepath)
end
def fill_corners(canvas, color, b_x = 80, b_y = 80)
c_width = canvas.width - 1
c_height = canvas.height - 1
# Top border
(0..c_width).each do |x|
(0..b_y).each do |y|
canvas[x, y] = color
end
end
# Botom border
(0..c_width).each do |x|
((c_height - b_y)..c_height).each do |y|
canvas[x, y] = color
end
end
# Left Border
(0..b_x).each do |x|
(0..c_height).each do |y|
canvas[x, y] = color
end
end
# Right Border
((c_width - b_x)..c_width).each do |x|
(0..c_height).each do |y|
canvas[x, y] = color
end
end
end
def each_cord(canvas)
c_width = canvas.width - 1
c_height = canvas.height - 1
(0..c_width).each do |x|
(0..c_height).each do |y|
yield ({x, y})
end
end
end
def fill_alpha(filepath)
canvas = StumpyPNG.read(filepath)
each_cord(canvas) do |x, y|
color = canvas[x, y]
if color.a < 65535
canvas[x, y] = BLACK_BORDER
end
end
StumpyPNG.write(canvas, filepath.gsub(".png", "-2.png"))
end
def add_bleed(filepath, width = 1260, height = 1714)
canvas = StumpyPNG.read(filepath)
if canvas.width >= width || canvas.height >= height
puts "card is already #{width}x#{height} or larger"
exit 1
end
x_diff = width - canvas.width
y_diff = height - canvas.height
new_canvas = Canvas.new(width, height)
x_border = (x_diff/2).to_i
y_border = (y_diff/2).to_i
fill_corners(new_canvas, BLACK_BORDER, x_border, y_border)
each_cord(canvas) do |x, y|
new_canvas[(x + x_border).to_i, (y + y_border).to_i] = canvas[x, y]
end
# (0..(width - 1)).each do |x|
# (0..(height - 1)).each do |y|
# end
# end
StumpyPNG.write(new_canvas, filepath.gsub(".png", "-2.png"))
end
# add_bleed("wow-tcg-mpc/card-back3.png")
#
# files = Dir.glob("raid and dungeons/**/*.png")
# bar = ProgressBar.new(total: files.size)
# files.each do |file|
# next if /^lib/ =~ file
# parse_file(file)
# bar.inc
# end
# # # puts "Sizes: "
# # # puts CARD_SIZES.to_json
# # # puts ""
# # puts "Colors: "
# # puts BORDER_SAMPLES.uniq.to_json
# failed = [
# "raid and dungeons/Assault on Icecrown Citadel/The Lich King - Backside.png",
# "raid and dungeons/Battle of the Aspects/Chaos Heroes and Bosses/Kalecgos the Spell-Weaver - Backside.png",
# "raid and dungeons/Dungeon Series - Scarlet Monastery/Scarlet Commander Mograine - Level 1.png",
# "raid and dungeons/Dungeon Series - Scarlet Monastery/Scarlet Commander Mograine - Level 3.png",
# "raid and dungeons/Dungeon Series - Shadowfang Keep/Godfrey's Crystal Scope.png",
# "raid and dungeons/Dungeon Series - Shadowfang Keep/Haunting Spirit.png",
# "raid and dungeons/Dungeon Series - Shadowfang Keep/Pistol Barrage.png",
# "raid and dungeons/Dungeon Series - The Deadmines/'Captain' Cookie - Level 2.png",
# "raid and dungeons/Magtheridon's Lair/Magtheridon Unleashed - Backside.png",
# "raid and dungeons/Magtheridon's Lair/Magtheridon's Blood.png",
# "raid and dungeons/Naxxramas/Bosses/Grobbulus - Backside.png",
# "raid and dungeons/Naxxramas/Bosses/Thaddius - Backside.png",
# "raid and dungeons/Naxxramas/Tokens/Frostwyrm Lair.png",
# "raid and dungeons/Naxxramas/Tokens/The Arachnid Quarter.png",
# "raid and dungeons/Naxxramas/Tokens/The Plague Quarter.png",
# "raid and dungeons/The Black Temple/Bosses/High Warlord Naj'entus - Backside.png",
# "raid and dungeons/The Black Temple/Bosses/Teron Gorefiend - Backside.png",
# ]
# # failed.each do |file|
# # parse_file(file)
# # end
# # "raid and dungeons/Magtheridon's Lair/Dark Mending Channeler.png"
# # "raid and dungeons/Magtheridon's Lair/Shadow Channeler 1.png"
require "file_utils"
require "json"
require "csv"
OUT_DIR = "../mpc-prep"
IN_DIR = "wow-tcg-mpc"
CARD_BACK_NAME = "Card Back.png"
BLOCKS = {
"AZ" => "Azeroth",
"BC" => "Burning Crusade",
"DW" => "Drums of War",
"SW" => "Scourgewar",
"WB" => "Worldbreaker",
"AF" => "Aftermath",
"TW" => "Timewalkers",
"MP" => "Mists of Pandaria",
}
BLOCK_KEYS = BLOCKS.keys
SETS = {
"HOA" => "Heroes of Azeroth",
"TDP" => "Through the Dark Portal",
"FOO" => "Fires of Outland",
"MOL" => "March of the Legion",
"SOB" => "Servants of the Betrayer",
"THI" => "The Hunt for Illidan",
"DOW" => "Drums of War",
"BLG" => "Blood of Gladiators",
"FOH" => "Fields of Honor",
"SCW" => "Scourgewar",
"ICE" => "Icecrown",
"WRA" => "Wrathgate",
"WBR" => "Worldbreaker",
"WOE" => "War of the Elements",
"TOD" => "Twilight of the Dragons",
"TOT" => "Throne of the Tides",
"COH" => "Crown of the Heavens",
"TOF" => "Tomb of the Forgotten",
"WOA" => "War of the Ancients",
"BOG" => "Betrayal of the Guardian",
"ROF" => "Reign of Fire",
"TIW" => "Timewalkers",
"ITM" => "Into the Mists",
"EOT" => "Echos of Thunder",
}
SET_KEYS = SETS.keys
RAIDS = {
"ONX" => "Onyxia's Lair",
"TMC" => "The Molten Core",
"MAG" => "Magtheridon's Lair",
"TBT" => "The Black Temple",
"NAX" => "Naxxramas",
"AIC" => "Assault on Icecrown Citadel",
"SFK" => "Shadowfang Keep",
"SCM" => "Scarlet Monastery",
"TDM" => "The Deadmines",
"BOA" => "Battle of the Aspects",
"COT" => "Caverns of Time",
"SOO" => "Siege of Orgrimmar",
}
RAID_KEYS = RAIDS.keys
BLOCK_FOLDERS = {
"01-BLOK-AZ-HOA" => "blocks/Azeroth/Heroes of Azeroth",
"02-BLOK-AZ-TDP" => "blocks/Azeroth/Through the Dark Portal",
"03-BLOK-AZ-FOO" => "blocks/Azeroth/Fires of Outland",
"04-BLOK-BC-MOL" => "blocks/Burning Crusade/March of the Legion",
"05-BLOK-BC-SOB" => "blocks/Burning Crusade/Servants of the Betrayer",
"06-BLOK-BC-THI" => "blocks/Burning Crusade/The Hunt for Illidan",
"07-BLOK-DW-DOW" => "blocks/Drums of War/Drums of War",
"08-BLOK-DW-BLG" => "blocks/Drums of War/Blood of Gladiators",
"09-BLOK-DW-FOH" => "blocks/Drums of War/Fields of Honor",
"10-BLOK-SW-SCW" => "blocks/Scourgewar/Scourgewar",
"11-BLOK-SW-ICE" => "blocks/Scourgewar/Icecrown",
"12-BLOK-SW-WRA" => "blocks/Scourgewar/Wrathgate",
"13-BLOK-WB-WBR" => "blocks/Worldbreaker/Worldbreaker",
"14-BLOK-WB-WOE" => "blocks/Worldbreaker/War of the Elements",
"15-BLOK-WB-TOD" => "blocks/Worldbreaker/Twilight of the Dragons",
"16-BLOK-AF-TOT" => "blocks/Aftermath/Throne of the Tides",
"17-BLOK-AF-COH" => "blocks/Aftermath/Crown of the Heavens",
"18-BLOK-AF-TOF" => "blocks/Aftermath/Tomb of the Forgotten",
"19-BLOK-TW-WOA" => "blocks/Timewalkers/War of the Ancients",
"20-BLOK-TW-BOG" => "blocks/Timewalkers/Betrayal of the Guardian",
"21-BLOK-TW-ROF" => "blocks/Timewalkers/Reign of Fire",
"22-BLOK-TW-TIW" => "blocks/Timewalkers/Timewalkers",
"23-BLOK-MP-ITM" => "reborn/into the mists",
"24-BLOK-MP-EOT" => "reborn/echos of thunder",
}
RAID_FOLDERS = {
"01-R-ONX" => "raid and dungeons/Onyxia's Lair",
"02-R-TMC" => "raid and dungeons/The Molten Core",
"03-R-MAG" => "raid and dungeons/Magtheridon's Lair",
"04-R-TBT" => "raid and dungeons/The Black Temple",
"05-R-NAX" => "raid and dungeons/Naxxramas",
"06-R-AIC" => "raid and dungeons/Assault on Icecrown Citadel",
"07-DS-SFK" => "raid and dungeons/Dungeon Series - Shadowfang Keep",
"08-DS-SCM" => "raid and dungeons/Dungeon Series - Scarlet Monastery",
"09-DS-TDM" => "raid and dungeons/Dungeon Series - The Deadmines",
"10-R-BOA" => "raid and dungeons/Battle of the Aspects",
"11-R-COT" => "raid and dungeons/Caverns of Time",
}
MISC = {
"A-AGM" => "aditional/Arena Grand Melee",
"A-DARK" => "aditional/Darkmoon Faire",
"A-DR-2008" => "aditional/2009 Demo Reward",
"A-FOW" => "aditional/Feast of Winterveil",
"A-FOW-2012" => "aditional/Feast of Winterveil 2012",
"A-HOG" => "aditional/Hogger",
"A-P-BCON-2007" => "aditional/Blizzcon 2007 Promo",
"A-P-BCON-2011" => "aditional/Blizzcon 2011",
"A-P-BEP-2007" => "aditional/Blizzard Employee Promo 2007",
"A-P-BEP-2009" => "aditional/Blizzard Employee Promo 2009",
"A-P-BEP-2010" => "aditional/Blizzard Employee Promo 2010",
"A-P-CE-BCEP" => "aditional/Burning Crusade Collector's Edition Promo",
"A-P-CE-CCEP" => "aditional/Cataclysm Collector's Edition Promo",
"A-P-CE-WCEP" => "aditional/Wotlk Collector's Edition Promo",
"A-SGA" => "aditional/2011 Showdown Goblins of Anarchy",
"A-T" => "aditional/Tokens",
"BLOK-AF-B" => "aditional/Crafting/Aftermath Block/Badges",
"BLOK-AF-C" => "aditional/Crafting/Aftermath Block",
"BLOK-AF-HP" => "aditional/Holiday Promos - Aftermath Block",
"BLOK-AZ-C" => "aditional/Crafting/Azeroth & Burning Crusade Block",
"BLOK-DW-C" => "aditional/Crafting/Drums of War Block",
"BLOK-DW-P" => "aditional/Drums of War Promos",
"BLOK-DW-ST" => "aditional/Drums of War and Death Knight Starter/Death Knight Starter",
"BLOK-DW-ST-DK" => "aditional/Drums of War and Death Knight Starter/Drums of War Starter",
"BLOK-MP-ITM-T" => "reborn/into the mists/Tokens",
"BLOK-SW-ICE-B" => "aditional/Crafting/Scourgewar Block/Icecrown/Badges",
"BLOK-SW-ICE-C" => "aditional/Crafting/Scourgewar Block/Icecrown",
"BLOK-SW-SCW-B" => "aditional/Crafting/Scourgewar Block/Scourgewar/Badges",
"BLOK-SW-SCW-C" => "aditional/Crafting/Scourgewar Block/Scourgewar",
"BLOK-SW-SOTA" => "aditional/Scrourgewar Strand of the Ancients",
"BLOK-SW-WRA-B" => "aditional/Crafting/Scourgewar Block/Wrathgate/Badges",
"BLOK-SW-WRA-C" => "aditional/Crafting/Scourgewar Block/Wrathgate",
"BLOK-TW-AA" => "aditional/Timewalkers Alternate Art",
"BLOK-TW-B" => "aditional/Crafting/Timewalker Block/Badges",
"BLOK-TW-C" => "aditional/Crafting/Timewalker Block",
"BLOK-TW-HP" => "aditional/Holiday Promos - Timewalkers Block",
"BLOK-WB-B" => "aditional/Crafting/Worldbreaker Block/Badges",
"BLOK-WB-C" => "aditional/Crafting/Worldbreaker Block",
"BLOK-WB-HP" => "aditional/Holiday Promos - Worldbreaker Block",
"CD-D-ELD" => "aditional/Champion Decks/Elderlimb",
"CD-D-HOG" => "aditional/Champion Decks/Hogger",
"CD-D-JAI" => "aditional/Champion Decks/Jaina",
"CD-D-MUR" => "aditional/Champion Decks/Murkdeep",
"CD-D-SYL" => "aditional/Champion Decks/Sylvanas",
"CD-EPICS" => "aditional/Champion Decks/Epics",
"CD-T" => "aditional/Champion Decks/Tokens",
"CS-2010-ST" => "aditional/Class Starter 2010",
"CS-2011-ALLY-DK" => "aditional/Class Starter 2011 Alliance/Death Knight",
"CS-2011-ALLY-DRUID" => "aditional/Class Starter 2011 Alliance/Druid",
"CS-2011-ALLY-HUNT" => "aditional/Class Starter 2011 Alliance/Hunter",
"CS-2011-ALLY-LOCK" => "aditional/Class Starter 2011 Alliance/Warlock",
"CS-2011-ALLY-MAGE" => "aditional/Class Starter 2011 Alliance/Mage",
"CS-2011-ALLY-PALY" => "aditional/Class Starter 2011 Alliance/Paladin",
"CS-2011-ALLY-PRIEST" => "aditional/Class Starter 2011 Alliance/Priest",
"CS-2011-ALLY-ROGUE" => "aditional/Class Starter 2011 Alliance/Rogue",
"CS-2011-ALLY-SHAMAN" => "aditional/Class Starter 2011 Alliance/Shaman",
"CS-2011-ALLY-WARR" => "aditional/Class Starter 2011 Alliance/Warrior",
"CS-2013-ALLY-HUNT" => "aditional/Class Starter 2013/Alliance Hunter",
"CS-2013-ALLY-LOCK" => "aditional/Class Starter 2013/Alliance Warlock",
"CS-2013-ALLY-PRIEST" => "aditional/Class Starter 2013/Alliance Priest",
"CS-2013-ALLY-ROGUE" => "aditional/Class Starter 2013/Alliance Rogue",
"CS-2013-ALLY-SHAMAN" => "aditional/Class Starter 2013/Alliance Shaman",
"CS-2013-HORDE-DK" => "aditional/Class Starter 2013/Horde Death Knight",
"CS-2013-HORDE-DRUID" => "aditional/Class Starter 2013/Horde Druid",
"CS-2013-HORDE-MAGE" => "aditional/Class Starter 2013/Horde Mage",
"CS-2013-HORDE-PALY" => "aditional/Class Starter 2013/Horde Paladin",
"CS-2013-HORDE-WARR" => "aditional/Class Starter 2013/Horde Warrior",
"DS-TR" => "aditional/Treasure/Dungeon Treasure",
"R-AIC-TR" => "aditional/Treasure/Assault on Icecrown Citadel",
"R-BOA-CHB" => "raid and dungeons/Battle of the Aspects/Chaos Heroes and Bosses",
"R-BOA-GIFT" => "raid and dungeons/Battle of the Aspects/Gift of the Aspects",
"R-BOA-HM" => "raid and dungeons/Battle of the Aspects/Hard Mode",
"R-BOA-TR" => "aditional/Treasure/Battle of the Aspects",
"R-COT-TR" => "aditional/Treasure/Cavern's of Time",
"R-MAG-TR" => "aditional/Treasure/Magtheridon",
"R-NAX-TR" => "aditional/Treasure/Naxxramas",
"R-ONX-TR" => "aditional/Treasure/Onyxia",
"R-SOO-TR" => "reborn/siege of orgrimmar - treasure",
"R-TBT-BE" => "raid and dungeons/The Black Temple/Betrayer Events",
"R-TBT-E" => "raid and dungeons/The Black Temple/Events",
"R-TBT-TR" => "aditional/Treasure/Black Temple",
"R-TMC-RAG" => "raid and dungeons/The Molten Core/Ragnaros Deck",
"R-TMC-RUNE" => "raid and dungeons/The Molten Core/Runes",
"R-TMC-TR" => "aditional/Treasure/Molten Core",
}
ALIASES = {
"TR" => "Treasure",
"B" => "Badges",
"A" => "Misc",
"C" => "Crafting",
"T" => "Tokens",
"P" => "Promos",
"D" => "Decks",
"E" => "Events",
"R" => "Raids",
"BLOK" => "Blocks",
"DS" => "Dungeon Series",
"CHB" => "Chaos Heroes and Bosses",
"GIFT" => "Gift of the Aspects",
"HM" => "Hard Mode",
"CD" => "Champion Decks",
"ST" => "Starter",
"CS" => "Class Starter",
"BE" => "Betrayer Events",
"RAG" => "Ragnaros Deck",
"RUNE" => "Runes",
# Classes
"ALLY" => "Alliance",
"HORDE" => "Horde",
"DRUID" => "Druid",
"DK" => "Death Knight",
"HUNT" => "Hunter",
"LOCK" => "Warlock",
"MAGE" => "Mage",
"PRIEST" => "Priest",
"PALY" => "Paladin",
"ROGUE" => "Rogue",
"SHAMAN" => "Shaman",
"WARR" => "Warrior",
# Misc
"EPICS" => "Epics",
"HP" => "Holidy",
"BCON" => "Blizzcon",
"AGM" => "Arena Grand Melee",
"CE" => "Collector's Edition",
"BCEP" => "Burning Crusade",
"BEP" => "Blizzard Employee Promo",
"CCEP" => "Cataclysm",
"DARK" => "Darkmoon Faire",
"DR" => "Demo Reward",
"FOW" => "Feast of Winterveil",
"HOG" => "Hogger",
"SGA" => "Showdown Goblins of Anarchy",
"WCEP" => "Wrath of the Lich King",
"ELD" => "Elderlimb",
"JAI" => "Jaina",
"MUR" => "Murkdeep",
"SYL" => "Sylvanas",
"SOTA" => "Strand of the Ancients",
"AA" => "Alternate Art",
}
# MISC.keys.sort.each do |k|
# puts %|"#{k}" => "#{MISC[k]}",|
# end
# exit
alias CardInfo = NamedTuple(path: String, num: String, dbl_sided: Bool, is_back: Bool, set_code: String, name: String, raid: Bool, token: Bool, card_back: String)
DOUBLES = Hash(String, Hash(String, String)).new
CARDS = Array(CardInfo).new
def is_block?(code)
BLOCK_KEYS.includes?(code)
end
def is_set?(code)
SET_KEYS.includes?(code)
end
def is_raid?(code)
RAID_KEYS.includes?(code)
end
def is_dbl(set_code, num, name)
DOUBLES[set_code][num]? == name
end
def parse_file_path(set_code, file, raid : Bool = false, token : Bool = false)
name = File.basename(file)
dir = File.dirname(file)
# Check for custom cardback
card_back = File.join(dir, CARD_BACK_NAME)
if name =~ /^(\d{3})b?\s-\s(.*)\.png/
num = $1
CARDS.push({
path: file,
num: num,
dbl_sided: is_dbl(set_code, num, $2),
is_back: /^(\d{3})b/.matches?(name),
set_code: set_code,
name: $2,
raid: raid,
token: token,
card_back: File.exists?(card_back) ? card_back : "",
})
end
end
def parse_dir(set_code, dir, raid : Bool = false, token : Bool = false)
DOUBLES[set_code] = Hash(String, String).new unless DOUBLES[set_code]?
files = Dir.glob(File.join(dir, "*.png")).sort!
# Save a list of all doublesided
files.each do |file|
DOUBLES[set_code][$1] = $2 if File.basename(file) =~ /^(\d{3})b\s-\s(.*)\.png/
end
# Go through and copy cards around
files.each do |file|
parse_file_path(set_code, file, raid: raid, token: token)
end
token_dir = File.join(dir, "Tokens")
if Dir.exists?(token_dir)
parse_dir("#{set_code}-TR", token_dir, raid: true, token: true)
end
end
def parse_raids
RAID_FOLDERS.keys.sort!.each do |k|
DOUBLES[k] = Hash(String, String).new
parse_dir(k, RAID_FOLDERS[k], true)
boss_dir = File.join(RAID_FOLDERS[k], "Bosses")
if Dir.exists?(boss_dir)
parse_dir("#{k}-B", boss_dir, true)
end
end
end
def parse_blocks
BLOCK_FOLDERS.keys.sort!.each do |k|
DOUBLES[k] = Hash(String, String).new
parse_dir(k, BLOCK_FOLDERS[k])
end
end
def sort_cards(cards)
cards.sort! { |a, b| "#{a.[:set_code]}-#{a.[:num]}" <=> "#{b.[:set_code]}-#{b.[:num]}" }
end
def find_mismatch(dbl_front, dbl_back)
# Check backs
dbl_front.each do |x|
backs = dbl_back.select do |y|
x[:num] == y[:num] && x[:set_code] == y[:set_code] && x[:raid] == y[:raid] && x[:token] == y[:token]
end
if backs.size == 0
puts "Missing back for #{x.to_json}"
exit
end
if backs.size > 1
puts "Multiple backs for #{x.to_json}"
exit
end
end
# Check for missing fronts
dbl_back.each do |x|
cards = dbl_front.select do |y|
x[:num] == y[:num] && x[:set_code] == y[:set_code] && x[:raid] == y[:raid] && x[:token] == y[:token]
end
if cards.size == 0
puts "Missing front for #{x.to_json}"
exit
end
if cards.size > 1
puts "Multiple fronts for #{x.to_json}"
exit
end
end
end
def get_part_path(part, set_code)
if is_raid?(part)
return RAIDS[part]
elsif is_set?(part)
return SETS[part]
elsif is_block?(part)
return BLOCKS[part]
end
if ALIASES[part]?
ALIASES[part]
elsif part =~ /(19|20)\d\d/
part
else
puts "unknown part: #{part} in set_code: #{set_code}"
exit(1)
end
end
def get_path(set_code)
parts = set_code.split("-")
if parts[0] =~ /\d+/
parts.shift
end
new_path = [] of String
parts.each do |part|
new_path << get_part_path(part, set_code)
end
new_path
end
def check_missing
count = 0
Dir.glob("**/*.png").each do |file|
next if file =~ /Card Back/
next if file =~ /Thank You Card/
next if file =~ /Hogger Leaflet/
next if file =~ /Limb Tentacle Colorized/
if CARDS.find(&.[:path].==(file)).nil?
count += 1
puts "missing: #{file}"
end
end
count
end
def write_cards_json
cards = Array(NamedTuple(path: String, num: String, dbl_sided: Bool, is_back: Bool,
name: String, block: String?, set: String?, raid: String?, card_back: String?,
token: Bool, badge: Bool, crafting: Bool, treasure: Bool,
)).new
CARDS.each do |card|
labels = get_path(card[:set_code])
filename = File.basename(card[:path])
dir = File.join(labels)
block = nil
set = nil
raid = nil
badge = false
crafting = false
treasure = false
token = card[:token]
parts = card[:set_code].split("-")
parts.each do |x|
block = BLOCKS[x] if is_block?(x)
raid = RAIDS[x] if is_raid?(x)
set = SETS[x] if is_set?(x)
badge = true if x == "B"
crafting = true if x == "C"
treasure = true if x == "TR"
token = true if x == "T"
end
cards << {
path: File.join(dir, filename),
num: card[:num],
dbl_sided: card[:dbl_sided],
is_back: card[:is_back],
name: card[:name],
block: block,
set: set,
raid: raid,
badge: badge,
crafting: crafting,
treasure: treasure,
token: token,
card_back: card[:card_back].empty? ? nil : File.join(dir, CARD_BACK_NAME),
}
end
File.write(File.join(OUT_DIR, "cards.json"), cards.sort! { |a, b| a[:path] <=> b[:path] }.to_pretty_json)
end
Dir.cd(IN_DIR)
parse_blocks
parse_raids
# Extra parsing
MISC.each do |k, v|
case k
when /\w\w\w-T/
parse_dir(k, v, raid: true)
when "A-TOKEN", "MP-ITM-TOKEN"
parse_dir(k, v, token: true)
else
parts = k.split("-")
parse_dir(k, v, raid: is_raid?(parts[0]))
end
end
regular = sort_cards(CARDS.select { |c| !c.[:dbl_sided] })
dbl_front = sort_cards(CARDS.select { |c| c.[:dbl_sided] && !c.[:is_back] })
dbl_back = sort_cards(CARDS.select { |c| c.[:dbl_sided] && c.[:is_back] })
puts "total: #{CARDS.size} reg: #{regular.size} dbl: #{dbl_front.size} backs: #{dbl_back.size}"
names = CARDS.map(&.[:name]).uniq!
puts "unique names: #{names.size}"
missing = check_missing
if missing > 0
puts "missing #{missing} cards"
exit(1)
end
if dbl_front.size != dbl_back.size
# puts dbl_front.to_pretty_json
puts "MISSMATCH In double sided cards! ABORT"
puts "total: #{CARDS.size} reg: #{regular.size} dbl: #{dbl_front.size} backs: #{dbl_back.size}"
find_mismatch(dbl_front, dbl_back)
exit(1)
end
# Cycle through each card and move it
CARDS.each do |c|
new_path = get_path(c[:set_code])
new_path.unshift(OUT_DIR)
dir = File.join(new_path)
FileUtils.mkdir_p(dir)
new_file = File.join(dir, File.basename(c[:path]))
# Check for existing file
if File.exists? new_file
# puts "File already exists at: #{new_file}"
# puts c.to_pretty_json
# exit(1)
next
end
# Copy file
FileUtils.cp(c[:path], new_file)
# Check for custom cardback
unless c[:card_back].empty?
new_card_back = File.join(dir, CARD_BACK_NAME)
# Copy the card back unless it already exists
FileUtils.cp(c[:card_back], new_card_back) unless File.exists?(new_card_back)
end
end
# Copy the standard card backs
FileUtils.cp(CARD_BACK_NAME, File.join(OUT_DIR, CARD_BACK_NAME))
FileUtils.cp("Card Back - Upper Deck.png", File.join(OUT_DIR, "Card Back - Upper Deck.png"))
write_cards_json
require "csv"
require "file_utils"
def parse_dir(dir)
filepath = File.join(dir, "_cards.txt")
# puts filepath
card_info = CSV.parse(File.read(filepath), separator: '\t', quote_char: '|')
card_info.each do |row|
next unless row[1]?
name = row[1].chomp.gsub(/\s+$/, "")
cards = find_card(dir, name)
if cards && cards.size >= 1
rename_cards(row[0], name, cards)
end
end
end
def rename_cards(_num, name, cards)
num = 0
num = _num.to_i if _num =~ /\d+/
num_prefix = sprintf("%03d", num)
cards.each do |c|
dir = File.dirname(c)
filename = File.basename(c)
# First see if we have a match
# next unless filename =~ /#{name}/
# Now see if its a closer match
new_name = "#{num_prefix} - #{name.gsub('?', "")}.png"
new_path = File.join(dir, new_name)
# Skip if its already renamed
next if filename == new_name
next if filename == "#{num_prefix}b - #{name}.png"
# Skip if its already numbered
# next if filename =~ /\d\d\db? - /
if filename =~ /^#{num_prefix}/
clean_name = clean(name)
if clean(filename) =~ /#{clean_name}.png/i
puts "#{File.basename(c)} -> #{File.basename(new_path)}"
FileUtils.mv(c, new_path)
end
# if clean(filename) =~ /^#{clean_name} - Backside.png/
# puts "#{name} -> #{filename}"
# new_name = "#{num_prefix}b - #{name}.png"
# new_path = File.join(dir, new_name)
# # FileUtils.mv(c, new_path)
# end
end
# Skip if its already renamed
# next if new_name == filename
# new_path = File.join(dir, new_name)
# puts "#{c} -> #{new_path}"
# FileUtils.mv(c, new_path)
end
end
def clean(str)
str.gsub("\"", "").gsub(":", " -").gsub("'", "").gsub("!", "")
end
def find_card(dir, name)
files = Dir.glob(File.join(dir, "**", "*.png"))
if files.size > 0
return files
end
nil
end
lists = Dir.glob("**/_cards.txt")
lists.each do |l|
parse_dir(File.dirname(l))
end
name: wow-tcg-mpc
version: 0.1.0
dependencies:
stumpy_png:
github: stumpycr/stumpy_png
version: "~> 5.0"
progress:
github: askn/progress
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment