Created
August 25, 2024 02:03
-
-
Save kalomaze/f03145c5c64c75295c8fd9de7a5611c0 to your computer and use it in GitHub Desktop.
Tensor Parallel latency
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
== Results torch.int8 meta-llama/Llama-2-7b-hf-TP1 ==== | |
[--------------------------------------- scaled-torch.int8-gemm --------------------------------------] | |
| pytorch_bf16_bf16_bf16_matmul-no-scales | cutlass_i8_i8_bf16_scaled_mm | |
1 threads: -------------------------------------------------------------------------------------------- | |
MKN=(1x4096x12288) | 195.3 | 142.4 | |
MKN=(1x4096x4096) | 64.5 | 47.5 | |
MKN=(1x4096x22016) | 322.9 | 235.6 | |
MKN=(1x11008x4096) | 162.6 | 112.9 | |
MKN=(16x4096x12288) | 187.5 | 142.6 | |
MKN=(16x4096x4096) | 66.2 | 47.6 | |
MKN=(16x4096x22016) | 331.4 | 237.2 | |
MKN=(16x11008x4096) | 168.2 | 113.1 | |
MKN=(32x4096x12288) | 206.4 | 142.9 | |
MKN=(32x4096x4096) | 66.1 | 47.8 | |
MKN=(32x4096x22016) | 362.7 | 238.9 | |
MKN=(32x11008x4096) | 169.3 | 113.3 | |
MKN=(64x4096x12288) | 207.9 | 143.5 | |
MKN=(64x4096x4096) | 73.1 | 48.2 | |
MKN=(64x4096x22016) | 428.4 | 242.2 | |
MKN=(64x11008x4096) | 179.3 | 113.8 | |
MKN=(128x4096x12288) | 224.3 | 145.0 | |
MKN=(128x4096x4096) | 71.3 | 48.8 | |
MKN=(128x4096x22016) | 435.7 | 248.1 | |
MKN=(128x11008x4096) | 179.8 | 114.4 | |
MKN=(256x4096x12288) | 340.8 | 176.5 | |
MKN=(256x4096x4096) | 129.3 | 58.4 | |
MKN=(256x4096x22016) | 571.7 | 306.6 | |
MKN=(256x11008x4096) | 335.7 | 136.1 | |
MKN=(512x4096x12288) | 497.0 | 297.3 | |
MKN=(512x4096x4096) | 164.3 | 110.4 | |
MKN=(512x4096x22016) | 877.7 | 529.1 | |
MKN=(512x11008x4096) | 430.7 | 261.4 | |
Times are in microseconds (us). | |
== Results torch.int8 meta-llama/Llama-2-7b-hf-TP2 ==== | |
[--------------------------------------- scaled-torch.int8-gemm --------------------------------------] | |
| pytorch_bf16_bf16_bf16_matmul-no-scales | cutlass_i8_i8_bf16_scaled_mm | |
1 threads: -------------------------------------------------------------------------------------------- | |
MKN=(1x4096x6144) | 93.8 | 63.6 | |
MKN=(1x2048x4096) | 34.8 | 28.0 | |
MKN=(1x4096x11008) | 171.2 | 140.7 | |
MKN=(1x5504x4096) | 84.8 | 60.6 | |
MKN=(16x4096x6144) | 105.2 | 63.7 | |
MKN=(16x2048x4096) | 34.8 | 27.9 | |
MKN=(16x4096x11008) | 176.2 | 141.4 | |
MKN=(16x5504x4096) | 87.3 | 60.6 | |
MKN=(32x4096x6144) | 99.7 | 64.2 | |
MKN=(32x2048x4096) | 36.2 | 28.1 | |
MKN=(32x4096x11008) | 205.7 | 142.1 | |
MKN=(32x5504x4096) | 87.7 | 60.9 | |
MKN=(64x4096x6144) | 105.6 | 65.2 | |
MKN=(64x2048x4096) | 36.2 | 28.3 | |
MKN=(64x4096x11008) | 207.7 | 143.5 | |
MKN=(64x5504x4096) | 94.1 | 61.2 | |
MKN=(128x4096x6144) | 120.5 | 66.5 | |
MKN=(128x2048x4096) | 39.4 | 29.1 | |
MKN=(128x4096x11008) | 203.7 | 146.2 | |
MKN=(128x5504x4096) | 92.2 | 62.4 | |
MKN=(256x4096x6144) | 151.4 | 108.4 | |
MKN=(256x2048x4096) | 70.7 | 36.2 | |
MKN=(256x4096x11008) | 339.5 | 174.2 | |
MKN=(256x5504x4096) | 172.4 | 74.7 | |
MKN=(512x4096x6144) | 273.9 | 165.2 | |
MKN=(512x2048x4096) | 86.4 | 67.7 | |
MKN=(512x4096x11008) | 491.2 | 285.1 | |
MKN=(512x5504x4096) | 219.6 | 140.8 | |
Times are in microseconds (us). | |
== Results torch.int8 meta-llama/Llama-2-7b-hf-TP4 ==== | |
[-------------------------------------- scaled-torch.int8-gemm --------------------------------------] | |
| pytorch_bf16_bf16_bf16_matmul-no-scales | cutlass_i8_i8_bf16_scaled_mm | |
1 threads: ------------------------------------------------------------------------------------------- | |
MKN=(1x4096x3072) | 50.4 | 46.9 | |
MKN=(1x1024x4096) | 20.1 | 16.8 | |
MKN=(1x4096x5504) | 84.7 | 58.0 | |
MKN=(1x2752x4096) | 45.3 | 34.5 | |
MKN=(16x4096x3072) | 50.1 | 46.9 | |
MKN=(16x1024x4096) | 19.9 | 16.9 | |
MKN=(16x4096x5504) | 104.1 | 58.3 | |
MKN=(16x2752x4096) | 45.5 | 34.6 | |
MKN=(32x4096x3072) | 55.8 | 47.1 | |
MKN=(32x1024x4096) | 21.1 | 17.1 | |
MKN=(32x4096x5504) | 90.4 | 58.7 | |
MKN=(32x2752x4096) | 46.1 | 34.7 | |
MKN=(64x4096x3072) | 68.9 | 47.1 | |
MKN=(64x1024x4096) | 20.7 | 17.6 | |
MKN=(64x4096x5504) | 97.4 | 59.7 | |
MKN=(64x2752x4096) | 51.9 | 35.3 | |
MKN=(128x4096x3072) | 73.3 | 47.2 | |
MKN=(128x1024x4096) | 22.6 | 18.2 | |
MKN=(128x4096x5504) | 131.7 | 60.8 | |
MKN=(128x2752x4096) | 51.0 | 35.4 | |
MKN=(256x4096x3072) | 81.8 | 51.7 | |
MKN=(256x1024x4096) | 38.2 | 26.5 | |
MKN=(256x4096x5504) | 147.4 | 107.8 | |
MKN=(256x2752x4096) | 91.4 | 44.1 | |
MKN=(512x4096x3072) | 167.8 | 101.0 | |
MKN=(512x1024x4096) | 46.8 | 49.5 | |
MKN=(512x4096x5504) | 246.3 | 161.2 | |
MKN=(512x2752x4096) | 113.0 | 82.3 | |
Times are in microseconds (us). | |
== Results torch.int8 meta-llama/Llama-2-7b-hf-TP8 ==== | |
[-------------------------------------- scaled-torch.int8-gemm --------------------------------------] | |
| pytorch_bf16_bf16_bf16_matmul-no-scales | cutlass_i8_i8_bf16_scaled_mm | |
1 threads: ------------------------------------------------------------------------------------------- | |
MKN=(1x4096x1536) | 25.6 | 46.1 | |
MKN=(1x512x4096) | 8.6 | 11.1 | |
MKN=(1x4096x2752) | 47.0 | 46.7 | |
MKN=(1x1376x4096) | 25.2 | 21.2 | |
MKN=(16x4096x1536) | 29.5 | 46.2 | |
MKN=(16x512x4096) | 8.5 | 11.2 | |
MKN=(16x4096x2752) | 45.6 | 46.7 | |
MKN=(16x1376x4096) | 25.4 | 21.3 | |
MKN=(32x4096x1536) | 34.0 | 46.3 | |
MKN=(32x512x4096) | 8.5 | 11.3 | |
MKN=(32x4096x2752) | 50.7 | 46.9 | |
MKN=(32x1376x4096) | 26.4 | 21.5 | |
MKN=(64x4096x1536) | 37.8 | 46.4 | |
MKN=(64x512x4096) | 8.4 | 11.4 | |
MKN=(64x4096x2752) | 62.8 | 47.0 | |
MKN=(64x1376x4096) | 26.4 | 21.7 | |
MKN=(128x4096x1536) | 31.5 | 46.7 | |
MKN=(128x512x4096) | 9.9 | 11.9 | |
MKN=(128x4096x2752) | 62.8 | 46.9 | |
MKN=(128x1376x4096) | 29.3 | 22.3 | |
MKN=(256x4096x1536) | 45.4 | 46.6 | |
MKN=(256x512x4096) | 16.5 | 21.1 | |
MKN=(256x4096x2752) | 100.2 | 50.1 | |
MKN=(256x1376x4096) | 54.9 | 29.6 | |
MKN=(512x4096x1536) | 101.4 | 50.4 | |
MKN=(512x512x4096) | 27.3 | 39.2 | |
MKN=(512x4096x2752) | 165.5 | 101.1 | |
MKN=(512x1376x4096) | 60.6 | 56.0 | |
Times are in microseconds (us). |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment