Last active
August 29, 2015 13:57
-
-
Save kamalbanga/9803606 to your computer and use it in GitHub Desktop.
Vehicle Routing Problem
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
import math | |
import numpy as np | |
seed = 1 | |
boost = 20 | |
maxIter = 50 | |
numCities = 15 | |
mu, sigma = 500, 200 | |
demand = np.random.normal(mu,sigma,numCities) | |
demand[0] = 0 | |
maxDistance = 40000 | |
RP = 0.8 # Restriction percentage set as 80% | |
upperX = 24000 | |
upperY = 32000 | |
T = 8 | |
t_u = 25/60 | |
t_l = 25/60 | |
upperDemand = 1200 | |
Q = 2000 | |
def randomMatrix(n, upperBound, seed): | |
random.seed(seed) | |
cities = [] | |
for r in range(n): | |
sm = [] | |
cities.append(sm) | |
for c in range(n): | |
sm.append(upperBound*random.random()) | |
return cities | |
def sampleMatrix(): | |
return [[0,10,15,100],[100,0,100,5],[15,100,0,5],[100,5,5,0]] | |
def cityCoord(n,seed): | |
random.seed(seed) | |
cityC = [] | |
for r in range(n): | |
coordinate = [] | |
coordinate.append(upperX*random.random()) | |
coordinate.append(upperY*random.random()) | |
cityC.append(coordinate) | |
return cityC | |
def cityMatrix(n, cityC): | |
cities = [[None for _ in range(n)] for _ in range(n)] | |
for r in range(n): | |
for c in range(n): | |
cities[r][c] = math.sqrt(math.pow((cityC[r][0]-cityC[c][0]),2) + | |
math.pow((cityC[r][1] - cityC[c][1]),2)) | |
return cities | |
def Demand(n,upperDemand): | |
demand = [] | |
for _ in range(n): | |
demand.append(upperDemand*random.random()) | |
demand[0] = 0 | |
return demand | |
def pathLength(cities,path): | |
return sum([cities[r][c] for (r,c) in zip(path,path[1:]+[path[0]])]) | |
def updatePher(pher,path,boost): | |
for (r,c) in zip(path,path[1:]+[path[0]]): | |
pher[r][c] = pher[r][c] + boost | |
def evaporatePher(pher,maxIter,boost): | |
decr = boost/float(maxIter) | |
for r in range(len(pher)): | |
for c in range(len(pher[r])): | |
if pher[r][c] > decr: | |
pher[r][c] = pher[r][c] - decr | |
else: | |
pher[r][c] = 0.0 | |
def doSumWeight(cities, pher, used, current): | |
runningTotal = 0.0 | |
for city in range(len(cities)): | |
if not used.has_key(city): | |
runningTotal = (runningTotal + | |
cities[current][city]*(1.0+pher[current][city])) | |
return runningTotal | |
def findSumWeight(cities, pher, used, current, soughtTotal): | |
runningTotal = 0.0 | |
next = 0 | |
for city in range(len(cities)): | |
if runningTotal >= soughtTotal: | |
break | |
if not used.has_key(city): | |
runningTotal = (runningTotal + | |
cities[current][city]*(1.0+pher[current][city])) | |
next = city | |
return next | |
def genPath(cities, pher): | |
#current = random.randint(0,len(cities)-1) | |
current = 0 | |
path = [current] | |
used = {current:1} | |
while len(used) < len(cities): | |
sumWeight = doSumWeight(cities,pher,used,current) | |
rndValue = random.random()*sumWeight | |
current = findSumWeight(cities,pher,used,current,rndValue) | |
path.append(current) | |
used[current] = 1 | |
return path | |
def bestPath(cities,seed,boost): | |
pher = randomMatrix(len(cities),0,0) | |
random.seed(seed) | |
bestLen = numCities*maxDistance | |
bestPath = [] | |
for iter in range(maxIter): | |
#print (iter,bestLen) | |
path = genPath(cities,pher) | |
pathLen = pathLength(cities,path) | |
if pathLen < bestLen: | |
updatePher(pher,path,boost) | |
bestLen = pathLen | |
bestPath = path | |
evaporatePher(pher,maxIter,boost) | |
return bestPath | |
def TSPtoVRP(demand,path): | |
sumDemand = 0 | |
sumTime = 0 | |
count = 0 | |
while count < len(path): | |
sumDemand += demand[path[count]] | |
if sumDemand > Q or sumTime > T: | |
sumDemand = 0 | |
sumTime = 0 | |
path.insert(count,0) | |
elif sumDemand == Q: | |
sumDemand = 0 | |
sumTime = 0 | |
path.insert(count,0) | |
#print "count = %s, len(path) = %s, sumDemand = %s, Q = %s"%(count,len(path),sumDemand,Q) | |
sumTime += t_u | |
count += 1 | |
return path | |
def main(): | |
print "starting" | |
#cities = randomMatrix(numCities,maxDistance,seed) | |
cityC = cityCoord(numCities,seed) | |
cities = cityMatrix(numCities,cityC) | |
path = bestPath(cities,seed,boost) | |
print path | |
print "len = ",pathLength(cities,path) | |
# demand = Demand(numCities, upperDemand) | |
path = TSPtoVRP(demand,path) | |
print path | |
countZero = 0 | |
for i in path: | |
if i == 0: | |
countZero += 1 | |
#print demand | |
for i in range(len(path)): | |
print (path[i],demand[path[i]]) | |
iter = 0 | |
lastZero = 0 | |
currentZero = 1 | |
print "cityC" | |
print "len = ",len(cityC) | |
while iter < countZero: | |
while currentZero < len(path) and path[currentZero] != 0: | |
currentZero += 1 | |
L_v = 0 | |
for i in range(lastZero,currentZero): | |
L_v += demand[path[i]] | |
i = lastZero | |
sumDem = 0 | |
#print "within while loop for RP" | |
while (Q-L_v+sumDem) < RP*Q: | |
sumDem += demand[path[i]] | |
#print "i = %s, demand[i] = %s, L_v = %s, Q-L_v+sumDem = %s"%(i,demand[path[i]],L_v,Q-L_v+sumDem) | |
i += 1 | |
#print ("iter = %s, L_v = %s, i = %s, path[i] = %s, lastZero = %s, currentZero = %s"%(iter,L_v,i-1,path[i-1],lastZero,currentZero)) | |
print (iter,i-2) | |
iter += 1 | |
centroid = [] | |
centroid.append(0) | |
centroid.append(0) | |
for j in range(i-2,currentZero): | |
centroid[0] += cityC[path[j]][0] | |
centroid[1] += cityC[path[j]][1] | |
print centroid[0]/(currentZero-i+2),centroid[1]/(currentZero-i+2) | |
lastZero = currentZero | |
currentZero += 1 | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment