Last active
December 7, 2023 12:50
-
-
Save kamikat/c4d472ce3c61feec6376 to your computer and use it in GitHub Desktop.
SCSS/SASS module calculating sin/cos/tan using Taylor Expansion.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/////////////////////////////////////////////////////////// | |
// Plain SASS Trigonometry Algorithm in Taylor Expansion // | |
// // | |
// Based on // | |
// http://japborst.net/posts/sass-sines-and-cosines // | |
/////////////////////////////////////////////////////////// | |
$pi: 3.14159265359; | |
$_precision: 10; | |
@function pow($base, $exp) { | |
$value: $base; | |
@if $exp > 1 { | |
@for $i from 2 through $exp { | |
$value: $value * $base; | |
} | |
} | |
@if $exp < 1{ | |
@for $i from 0 through -$exp { | |
$value: $value / $base; | |
} | |
} | |
@return $value; | |
} | |
@function fact($num) { | |
$fact: 1; | |
@if $num > 0{ | |
@for $i from 1 through $num { | |
$fact: $fact * $i; | |
} | |
} | |
@return $fact; | |
} | |
@function _to_unitless_rad($angle) { | |
@if unit($angle) == "deg" { | |
$angle: $angle / 180deg * $pi; | |
} | |
@if unit($angle) == "rad" { | |
$angle: $angle / 1rad; | |
} | |
@return $angle; | |
} | |
@function sin($angle){ | |
$a: _to_unitless_rad($angle); | |
$sin: $a; | |
@for $n from 1 through $_precision { | |
$sin: $sin + (pow(-1, $n) / fact(2 * $n + 1) ) * pow($a, (2 * $n + 1)); | |
} | |
@return $sin; | |
} | |
@function cos($angle){ | |
$a: _to_unitless_rad($angle); | |
$cos: 1; | |
@for $n from 1 through $_precision { | |
$cos: $cos + ( pow(-1,$n) / fact(2*$n) ) * pow($a,2*$n); | |
} | |
@return $cos; | |
} | |
@function tan($angle){ | |
@return sin($angle) / cos($angle); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thanks for the detailed code review, I was looking for this solution. I was looking for several options for solving trigonometric equations. I have tried using online calculators but these programs do not show the progress of the solution and the internal code. I realized that the best way to understand logic https://plainmath.net/secondary/geometry/trigonometry is to learn the dynamic manual process of solving trigonometric equations. Such resources help build the right understanding.