This gist demonstrates how to setup a python project that process a numpy array from C language.
To compile the project, run
make all
To test it, run
make test
| """ | |
| Reference: | |
| 1. https://gist.github.com/ycopin/3342888 | |
| 2. http://matplotlib.org/mpl_toolkits/axes_grid/users/overview.html#axisartist | |
| """ | |
| import numpy as np | |
| import matplotlib.pyplot as plt |
This gist demonstrates how to setup a python project that process a numpy array from C language.
To compile the project, run
make all
To test it, run
make test
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 48, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ |
| # Calculate Pi using monte carlo method | |
| function estimate_pi_vec() | |
| # Vectorized way of calculating Pi | |
| # This style is commonly seen in python or Matlab/Octave to avoid for loops | |
| samplenum=100000000 | |
| mc_x=rand(samplenum,1) | |
| mc_y=rand(samplenum,1) |
| { | |
| "metadata": { | |
| "language": "Julia", | |
| "name": "", | |
| "signature": "sha256:999e48e1cfeb072e56d4089a89783a9483f6c014acc704990d74ba7079a57434" | |
| }, | |
| "nbformat": 3, | |
| "nbformat_minor": 0, | |
| "worksheets": [ | |
| { |
| { | |
| "metadata": { | |
| "language": "Julia", | |
| "name": "", | |
| "signature": "sha256:6394928c631f491d9b3776e1af071144d00c1446e0ec4d032c094af7b3d8edd6" | |
| }, | |
| "nbformat": 3, | |
| "nbformat_minor": 0, | |
| "worksheets": [ | |
| { |
| const ContinueGame=999 | |
| const WinGame=777 | |
| const LoseGame=444 | |
| const QuitGame=-99 | |
| function move(line,direction) | |
| lineLen=length(line) | |
| nonZeroLine=line[line.>0] |
| # Compiled source # | |
| ################### | |
| *.com | |
| *.class | |
| *.dll | |
| *.exe | |
| *.o | |
| *.so | |
| # Packages # |