Created
June 2, 2019 06:51
-
-
Save karamanbk/3fa60b178bc1ae1cf7771b128278a3a2 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#import libraries | |
from datetime import datetime, timedelta,date | |
import pandas as pd | |
%matplotlib inline | |
from sklearn.metrics import classification_report,confusion_matrix | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import seaborn as sns | |
from __future__ import division | |
from sklearn.cluster import KMeans | |
#do not show warnings | |
import warnings | |
warnings.filterwarnings("ignore") | |
#import plotly for visualization | |
import plotly.plotly as py | |
import plotly.offline as pyoff | |
import plotly.graph_objs as go | |
#import machine learning related libraries | |
from sklearn.svm import SVC | |
from sklearn.multioutput import MultiOutputClassifier | |
from sklearn.ensemble import GradientBoostingClassifier | |
from sklearn.tree import DecisionTreeClassifier | |
from sklearn.neighbors import KNeighborsClassifier | |
from sklearn.naive_bayes import GaussianNB | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.linear_model import LogisticRegression | |
import xgboost as xgb | |
from sklearn.model_selection import KFold, cross_val_score, train_test_split | |
#initiate plotly | |
pyoff.init_notebook_mode() | |
#import the csv | |
tx_data = pd.read_csv('data.csv') | |
#print first 10 rows | |
tx_data.head(10) | |
#convert date field from string to datetime | |
tx_data['InvoiceDate'] = pd.to_datetime(tx_data['InvoiceDate']) | |
#create dataframe with uk data only | |
tx_uk = tx_data.query("Country=='United Kingdom'").reset_index(drop=True) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment