Skip to content

Instantly share code, notes, and snippets.

@karanjakhar
Created July 1, 2019 16:34
Show Gist options
  • Save karanjakhar/19f762d58a44753f1ccf39fa89ff3881 to your computer and use it in GitHub Desktop.
Save karanjakhar/19f762d58a44753f1ccf39fa89ff3881 to your computer and use it in GitHub Desktop.
k-means with dummy data.
#importing required libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
#creating data
x1 = np.concatenate((np.random.normal(10,2,(100,1)),np.random.normal(20,5,(100,1))))
x2 = np.concatenate((np.random.normal(10,2,(100,1)), np.random.normal(30,3,(100,1))))
#visualizing the data
plt.scatter(x1.flatten(),x2.flatten())
plt.show()
#fitting k-means classifier
kmeans = KMeans(n_clusters = 2)
kmeans.fit(np.concatenate((x1,x2),axis = 1))
#visualizing kmeans result
plt.scatter(x1.flatten(),x2.flatten(),c = kmeans.labels_)
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment