Created
April 30, 2020 21:14
-
-
Save karanjakhar/2b0d899fabc5d9ebbb7ac71db1cef01d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torchvision | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
n_epochs = 3 | |
batch_size_train = 64 | |
batch_size_test = 1000 | |
learning_rate = 0.01 | |
momentum = 0.5 | |
log_interval = 10 | |
random_seed = 1 | |
torch.backends.cudnn.enabled = False | |
torch.manual_seed(random_seed) | |
train_loader = torch.utils.data.DataLoader( | |
torchvision.datasets.MNIST('/files/', train=True, download=True, | |
transform=torchvision.transforms.Compose([ | |
torchvision.transforms.ToTensor(), | |
torchvision.transforms.Normalize( | |
(0.1307,), (0.3081,)) | |
])), | |
batch_size=batch_size_train, shuffle=True) | |
test_loader = torch.utils.data.DataLoader( | |
torchvision.datasets.MNIST('/files/', train=False, download=True, | |
transform=torchvision.transforms.Compose([ | |
torchvision.transforms.ToTensor(), | |
torchvision.transforms.Normalize( | |
(0.1307,), (0.3081,)) | |
])), | |
batch_size=batch_size_test, shuffle=True) | |
examples = enumerate(test_loader) | |
batch_idx, (example_data, example_targets) = next(examples) | |
example_data.shape | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.conv1 = nn.Conv2d(1, 10, kernel_size=5) | |
self.conv2 = nn.Conv2d(10, 20, kernel_size=5) | |
self.conv2_drop = nn.Dropout2d() | |
self.fc1 = nn.Linear(320, 50) | |
self.fc2 = nn.Linear(50, 10) | |
def forward(self, x): | |
x = F.relu(F.max_pool2d(self.conv1(x), 2)) | |
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) | |
x = x.view(-1, 320) | |
x = F.relu(self.fc1(x)) | |
x = F.dropout(x, training=self.training) | |
x = self.fc2(x) | |
return F.log_softmax(x) | |
network = Net() | |
optimizer = optim.SGD(network.parameters(), lr=learning_rate, | |
momentum=momentum) | |
train_losses = [] | |
train_counter = [] | |
test_losses = [] | |
test_counter = [i*len(train_loader.dataset) for i in range(n_epochs + 1)] | |
def train(epoch): | |
network.train() | |
for batch_idx, (data, target) in enumerate(train_loader): | |
optimizer.zero_grad() | |
output = network(data) | |
loss = F.nll_loss(output, target) | |
loss.backward() | |
optimizer.step() | |
if batch_idx % log_interval == 0: | |
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | |
epoch, batch_idx * len(data), len(train_loader.dataset), | |
100. * batch_idx / len(train_loader), loss.item())) | |
train_losses.append(loss.item()) | |
train_counter.append( | |
(batch_idx*64) + ((epoch-1)*len(train_loader.dataset))) | |
torch.save(network.state_dict(), '/results/model.pth') | |
torch.save(optimizer.state_dict(), '/results/optimizer.pth') | |
def test(): | |
network.eval() | |
test_loss = 0 | |
correct = 0 | |
with torch.no_grad(): | |
for data, target in test_loader: | |
output = network(data) | |
test_loss += F.nll_loss(output, target, size_average=False).item() | |
pred = output.data.max(1, keepdim=True)[1] | |
correct += pred.eq(target.data.view_as(pred)).sum() | |
test_loss /= len(test_loader.dataset) | |
test_losses.append(test_loss) | |
print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( | |
test_loss, correct, len(test_loader.dataset), | |
100. * correct / len(test_loader.dataset))) | |
test() | |
for epoch in range(1, n_epochs + 1): | |
train(epoch) | |
test() | |
#loading the model | |
continued_network = Net() | |
continued_optimizer = optim.SGD(network.parameters(), lr=learning_rate, | |
momentum=momentum) | |
network_state_dict = torch.load('model.pth') | |
continued_network.load_state_dict(network_state_dict) | |
optimizer_state_dict = torch.load('optimizer.pth') | |
continued_optimizer.load_state_dict(optimizer_state_dict) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment