Skip to content

Instantly share code, notes, and snippets.

View karanjakhar's full-sized avatar
😀

Karan Jakhar karanjakhar

😀
View GitHub Profile
@karanjakhar
karanjakhar / LinearRegression.py
Last active June 4, 2019 17:21
sample code for linear regression
#Importing required libraries
from sklearn.linear_model import LinearRegression
from sklearn.datasets import california_housing
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
#Downloading dataset
data = california_housing.fetch_california_housing()
#Getting target and features
@karanjakhar
karanjakhar / LinearRegression_loading_data.py
Last active June 4, 2019 20:45
Importing wine data and predicting quality
#importing libraries
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import pandas as pd
#loading data
data = pd.read_csv('path of your csv file here.csv')
#getting information
@karanjakhar
karanjakhar / LogisticRegression.py
Last active June 15, 2019 12:20
Logistic Regression code
#importing required libraries
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
#loading data from a csv file to a pandas Dataframe
df = pd.read_csv('https://query.data.world/s/nsyvxagzhkssbiwytst5vpuvxpwgtb')
#looking at first 5 rows of the data
df.head()
#loading required libraries
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
#loading data for classification
df = pd.read_csv('https://query.data.world/s/67p5gkjye5vocfiqm2cuxnrkx4ijim')
#looking at first five rows
df.head()
#loading required libraries
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.svm import SVR
#loading data
df = pd.read_csv('boston_train.csv')
#looking at first five rows
#importing required libraries
from sklearn.neighbors import KNeighborsClassifier
import pandas as pd
from sklearn.model_selection import train_test_split
#loading data into dataframe
df = pd.read_csv('https://query.data.world/s/67p5gkjye5vocfiqm2cuxnrkx4ijim')
#printig first five rows
df.head()
#importing required libraries
from sklearn.neighbors import KNeighborsRegressor
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
#loading data for regression
r_df = pd.read_csv('boston_train.csv')
#printing first five rows
#importing required libraries
from sklearn.naive_bayes import GaussianNB
import pandas as pd
from sklearn.model_selection import train_test_split
#loading data into dataframe
df = pd.read_csv('https://query.data.world/s/67p5gkjye5vocfiqm2cuxnrkx4ijim')
#printig first five rows
df.head()
@karanjakhar
karanjakhar / kmeans.py
Created July 1, 2019 16:34
k-means with dummy data.
#importing required libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
#creating data
x1 = np.concatenate((np.random.normal(10,2,(100,1)),np.random.normal(20,5,(100,1))))
x2 = np.concatenate((np.random.normal(10,2,(100,1)), np.random.normal(30,3,(100,1))))
#visualizing the data
@karanjakhar
karanjakhar / full implementation.py
Last active July 2, 2019 04:20
Testing the result of different classifiers
#importing required libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier