Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save karlmutch/80a8ac8766fd9001351932e2ceffacd1 to your computer and use it in GitHub Desktop.
Save karlmutch/80a8ac8766fd9001351932e2ceffacd1 to your computer and use it in GitHub Desktop.
Reading List for new comers to AI
https://www.dataquest.io/blog/basic-statistics-with-python-descriptive-statistics/
https://blogs.oracle.com/ai/types-of-machine-learning-and-top-10-algorithms-everyone-should-know
https://www.kdnuggets.com/2018/05/5-reasons-logistic-regression-first-data-scientist.html
https://www.kdnuggets.com/2018/02/logistic-regression-concise-technical-overview.html
https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861
https://machinelearningmastery.com/a-gentle-introduction-to-the-central-limit-theorem-for-machine-learning/
https://heartbeat.fritz.ai/introduction-to-decision-tree-learning-cd604f85e236
https://medium.com/@ODSC/understanding-the-3-primary-types-of-gradient-descent-987590b2c36
• Linear regression - https://bit.ly/1LmnkPf
• Logistic regression - https://bit.ly/2jH2lhi
• SVM - https://bit.ly/2hM1Epx
• Random forest - https://bit.ly/1WtJjw4
• Gradient boosting - https://bit.ly/2AMNvyl
• PCA - https://bit.ly/1MkX8V3
• K-means clustering - https://bit.ly/1Pfa0B9
• Collaborative filtering - https://bit.ly/2Iqf6Ku
• kNN - https://bit.ly/2ryyhO4
• ARIMA - https://bit.ly/2iRiy55
Bonus: Neural networks - https://bit.ly/1I5qib7
course notes and book
➡ https://bit.ly/2IFr0n7
➡ https://lnkd.in/ebSzHPn
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment