Created
April 9, 2012 21:35
-
-
Save karlnapf/2346698 to your computer and use it in GitHub Desktop.
Code to reproduce MKL memorsy errors
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* This program is free software; you can redistribute it and/or modify | |
* it under the terms of the GNU General Public License as published by | |
* the Free Software Foundation; either version 3 of the License, or | |
* (at your option) any later version. | |
* | |
* Written (W) 2011 Heiko Strathmann | |
* Copyright (C) 2011 Berlin Institute of Technology and Max-Planck-Society | |
*/ | |
#include <shogun/base/init.h> | |
#include <shogun/evaluation/CrossValidation.h> | |
#include <shogun/evaluation/ContingencyTableEvaluation.h> | |
#include <shogun/evaluation/StratifiedCrossValidationSplitting.h> | |
#include <shogun/modelselection/GridSearchModelSelection.h> | |
#include <shogun/modelselection/ModelSelectionParameters.h> | |
#include <shogun/modelselection/ParameterCombination.h> | |
#include <shogun/features/Labels.h> | |
#include <shogun/features/SimpleFeatures.h> | |
#include <shogun/classifier/mkl/MKLClassification.h> | |
#include <shogun/classifier/svm/LibSVM.h> | |
#include <shogun/kernel/GaussianKernel.h> | |
#include <shogun/kernel/CombinedKernel.h> | |
#include <shogun/distance/MinkowskiMetric.h> | |
using namespace shogun; | |
void print_message(FILE* target, const char* str) | |
{ | |
fprintf(target, "%s", str); | |
} | |
CModelSelectionParameters* create_param_tree() | |
{ | |
CModelSelectionParameters* root=new CModelSelectionParameters(); | |
CModelSelectionParameters* c1=new CModelSelectionParameters("C1"); | |
root->append_child(c1); | |
c1->build_values(-1.0, 1.0, R_EXP); | |
CModelSelectionParameters* c2=new CModelSelectionParameters("C2"); | |
root->append_child(c2); | |
c2->build_values(-1.0, 1.0, R_EXP); | |
CCombinedKernel* kernel1=new CCombinedKernel(); | |
kernel1->append_kernel(new CGaussianKernel(10, 2)); | |
kernel1->append_kernel(new CGaussianKernel(10, 3)); | |
kernel1->append_kernel(new CGaussianKernel(10, 4)); | |
CModelSelectionParameters* param_kernel1= | |
new CModelSelectionParameters("kernel", kernel1); | |
root->append_child(param_kernel1); | |
CCombinedKernel* kernel2=new CCombinedKernel(); | |
kernel2->append_kernel(new CGaussianKernel(10, 20)); | |
kernel2->append_kernel(new CGaussianKernel(10, 30)); | |
kernel2->append_kernel(new CGaussianKernel(10, 40)); | |
CModelSelectionParameters* param_kernel2= | |
new CModelSelectionParameters("kernel", kernel2); | |
root->append_child(param_kernel2); | |
return root; | |
} | |
int main(int argc, char **argv) | |
{ | |
init_shogun(&print_message, &print_message, &print_message); | |
sg_io->set_loglevel(MSG_INFO); | |
int32_t num_subsets=3; | |
int32_t num_vectors=20; | |
int32_t dim_vectors=3; | |
/* create some data and labels */ | |
float64_t* matrix=SG_MALLOC(float64_t, num_vectors*dim_vectors); | |
CLabels* labels=new CLabels(num_vectors); | |
for (int32_t i=0; i<num_vectors*dim_vectors; i++) | |
matrix[i]=CMath::randn_double(); | |
/* create num_feautres 2-dimensional vectors */ | |
CSimpleFeatures<float64_t>* features=new CSimpleFeatures<float64_t> (); | |
features->set_feature_matrix(matrix, dim_vectors, num_vectors); | |
/* create combined features */ | |
CCombinedFeatures* comb_features=new CCombinedFeatures(); | |
comb_features->append_feature_obj(features); | |
comb_features->append_feature_obj(features); | |
comb_features->append_feature_obj(features); | |
/* create labels, two classes */ | |
for (index_t i=0; i<num_vectors; ++i) | |
labels->set_label(i, i%2==0 ? 1 : -1); | |
/* works */ | |
// /* create svm */ | |
// CMKLClassification* classifier=new CMKLClassification(new CLibSVM()); | |
// classifier->set_interleaved_optimization_enabled(false); | |
/* create svm */ | |
CMKLClassification* classifier=new CMKLClassification(); | |
// both fail: | |
//classifier->set_interleaved_optimization_enabled(false); | |
classifier->set_interleaved_optimization_enabled(true); | |
/* splitting strategy */ | |
CStratifiedCrossValidationSplitting* splitting_strategy= | |
new CStratifiedCrossValidationSplitting(labels, num_subsets); | |
/* accuracy evaluation */ | |
CContingencyTableEvaluation* evaluation_criterium= | |
new CContingencyTableEvaluation(ACCURACY); | |
/* cross validation class for evaluation in model selection */ | |
CCrossValidation* cross=new CCrossValidation(classifier, comb_features, | |
labels, splitting_strategy, evaluation_criterium); | |
cross->set_num_runs(1); | |
/* print all parameter available for modelselection | |
* Dont worry if yours is not included, simply write to the mailing list */ | |
classifier->print_modsel_params(); | |
/* model parameter selection, deletion is handled by modsel class (SG_UNREF) */ | |
CModelSelectionParameters* param_tree=create_param_tree(); | |
param_tree->print_tree(); | |
/* handles all of the above structures in memory */ | |
CGridSearchModelSelection* grid_search=new CGridSearchModelSelection( | |
param_tree, cross); | |
bool print_state=true; | |
CParameterCombination* best_combination=grid_search->select_model( | |
print_state); | |
SG_SPRINT("best parameter(s):\n"); | |
best_combination->print_tree(); | |
best_combination->apply_to_machine(classifier); | |
/* larger number of runs to have tighter confidence intervals */ | |
cross->set_num_runs(10); | |
cross->set_conf_int_alpha(0.01); | |
CrossValidationResult result=cross->evaluate(); | |
SG_SPRINT("result: "); | |
result.print_result(); | |
/* clean up destroy result parameter */ | |
SG_UNREF(best_combination); | |
SG_UNREF(grid_search); | |
exit_shogun(); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment