Last active
          January 24, 2019 09:02 
        
      - 
      
- 
        Save karolzak/d250d2c029f9d0e5adbd146e57c8cc09 to your computer and use it in GitHub Desktop. 
    Image plotting for semantic segmentation data
  
        
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | import numpy as np | |
| import matplotlib.pyplot as plt | |
| def mask_to_red(mask, img_size=1024): | |
| ''' | |
| Converts binary segmentation mask from white to red color. | |
| Also adds alpha channel to make black background transparent. | |
| ''' | |
| c1 = mask.reshape(img_size,img_size) | |
| c2 = np.zeros((img_size,img_size)) | |
| c3 = np.zeros((img_size,img_size)) | |
| c4 = mask.reshape(img_size,img_size) | |
| return np.stack((c1, c2, c3, c4), axis=-1) | |
| def mask_to_rgba(mask, img_size=1024, color='red'): | |
| ''' | |
| Converts binary segmentation mask from white to red color. | |
| Also adds alpha channel to make black background transparent. | |
| ''' | |
| zeros = np.zeros((img_size,img_size)) | |
| ones = mask.reshape(img_size,img_size) | |
| if color == 'red': | |
| return np.stack((ones, zeros, zeros, ones), axis=-1) | |
| elif color == 'green': | |
| return np.stack((zeros, ones, zeros, ones), axis=-1) | |
| elif color == 'blue': | |
| return np.stack((zeros, zeros, ones, ones), axis=-1) | |
| elif color == 'yellow': | |
| return np.stack((ones, ones, zeros, ones), axis=-1) | |
| elif color == 'magenta': | |
| return np.stack((ones, zeros, ones, ones), axis=-1) | |
| elif color == 'cyan': | |
| return np.stack((zeros, ones, ones, ones), axis=-1) | |
| def plot_imgs(org_imgs, | |
| mask_imgs, | |
| pred_imgs=None, | |
| nm_img_to_plot=10, | |
| figsize=4, | |
| img_size=1024, | |
| alpha=0.5 | |
| ): | |
| ''' | |
| Image plotting for semantic segmentation data. | |
| Last column is always an overlay of ground truth or prediction | |
| depending on what was provided as arguments. | |
| ''' | |
| #nm_img_to_plot = org_imgs.shape[0] | |
| im_id = 0 | |
| if not (pred_imgs is None): | |
| cols = 4 | |
| else: | |
| cols = 3 | |
| fig, axes = plt.subplots(nm_img_to_plot, cols, figsize=(cols*figsize, nm_img_to_plot*figsize)) | |
| axes[0, 0].set_title("original", fontsize=15) | |
| axes[0, 1].set_title("ground truth", fontsize=15) | |
| if not (pred_imgs is None): | |
| axes[0, 2].set_title("prediction", fontsize=15) | |
| axes[0, 3].set_title("overlay", fontsize=15) | |
| else: | |
| axes[0, 2].set_title("overlay", fontsize=15) | |
| for m in range(0, nm_img_to_plot): | |
| axes[m, 0].imshow(org_imgs[im_id].reshape((img_size,img_size, 3))) | |
| axes[m, 0].set_axis_off() | |
| axes[m, 1].imshow(mask_imgs[im_id].reshape((img_size,img_size)), cmap='gray') | |
| axes[m, 1].set_axis_off() | |
| if not (pred_imgs is None): | |
| axes[m, 2].imshow(pred_imgs[im_id].reshape((img_size,img_size)), cmap='gray') | |
| axes[m, 2].set_axis_off() | |
| axes[m, 3].imshow(org_imgs[im_id].reshape((img_size,img_size, 3))) | |
| axes[m, 3].imshow(mask_to_red(pred_imgs[im_id].reshape((img_size,img_size)), img_size=img_size), alpha=alpha) | |
| axes[m, 3].set_axis_off() | |
| else: | |
| axes[m, 2].imshow(org_imgs[im_id].reshape((img_size,img_size, 3))) | |
| axes[m, 2].imshow(mask_to_red(mask_imgs[im_id].reshape((img_size,img_size)), img_size=img_size), alpha=alpha) | |
| axes[m, 2].set_axis_off() | |
| im_id += 1 | |
| plt.show() | 
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment