Created
March 26, 2018 03:57
-
-
Save karthik/7e7875af0ecaa4327d3d61f550de94e0 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library('rcrossref') | |
library('tibble') | |
library('lubridate') | |
library('ggplot2') | |
library('dplyr') | |
library('readr') | |
library('tidyr') | |
# These next few lines of code create a set of start and end dates | |
# Then turns these into a list with pairs | |
from_pub_date <- seq(as.Date("2013-01-01"), length = 63, by = "months") | |
until_pub_date <- seq(as.Date("2013-02-01"), length = 63, by = "months") - 1 | |
months <- data.frame(from_pub_date = as.character(from_pub_date), until_pub_date = as.character(until_pub_date), stringsAsFactors = FALSE) | |
xy.list <- split(months, seq(nrow(months))) | |
xy.list <- setNames(split(months, seq(nrow(months))), rownames(months)) | |
xy.list | |
totals <- function(...) { | |
x <- cr_works(filter = list(...), .progress = "text") | |
return(x$meta$total_results) | |
} | |
# This function grabs metrics by month | |
get_data <- function(from_pub_date, until_pub_date) { | |
tot = totals(from_pub_date = from_pub_date, until_pub_date = until_pub_date) | |
has_funder = totals(from_pub_date = from_pub_date, until_pub_date = until_pub_date, has_funder = TRUE) | |
has_license = totals(from_pub_date = from_pub_date, until_pub_date = until_pub_date, has_license = TRUE) | |
has_orcid = totals(from_pub_date = from_pub_date, until_pub_date = until_pub_date, has_orcid = TRUE) | |
has_abstract = totals(from_pub_date = from_pub_date, until_pub_date = until_pub_date, has_abstract = TRUE) | |
tbl_df(data.frame(tot, has_funder, has_license, has_orcid, has_abstract)) | |
} | |
# ------------------------------------------- | |
results <- lapply(xy.list, function(x) { get_data(x$from_pub_date, x$until_pub_date) }) | |
res <- bind_rows(results) | |
res$month <- as.Date(months$from_pub_date) | |
#These next few lines are to get the percentages | |
percentages <- res %>% | |
mutate( | |
percent_orcid = (has_orcid/tot) * 100, | |
percent_license = (has_license/tot) * 100, | |
percent_abstract = (has_abstract/tot) * 100, | |
percent_funder = (has_funder/tot) * 100 | |
) | |
# For the sake of plotting, we lose the raw data and only keep percentages and the month column | |
perc <- percentages[, c(6:10)] | |
# This bit below collapses everything into a key value pair. | |
# So this means that as your number of measures grow, it grows rows, not columns making it easy to plot | |
caption = paste0("Crossref REST API & rOpenSci library. Retrieved ", lubridate::today()) | |
p2 <- tidyr::gather(perc, key = "col", value = value, -month ) | |
# Now we make the figure and save it to a variable so we can write it to disk | |
crossref_fig <- ggplot(p2, aes(month, value, fill = col)) + geom_bar(stat = "identity", position = "dodge") + scale_y_continuous(limits = c(0, 100)) + geom_hline(yintercept = 100, linetype = "dashed") + | |
labs( | |
title = "Crossref Metadata Coverage (%)", | |
subtitle = "2014 - present", | |
caption = caption, | |
x="Publication date (month)", | |
y="% of total works published each month" | |
) + theme(plot.title = element_text(hjust = 0.5), plot.subtitle = element_text(hjust = 0.5)) | |
# To specify legend display in a new variable | |
crossref_fig_updated <- crossref_fig + scale_fill_discrete(name="Metadata", | |
breaks=c("percent_license", "percent_funder", "percent_orcid", "percent_abstract"), | |
labels=c("License","Funding", "ORCID", "Abstract")) | |
# display plot | |
crossref_fig_updated | |
# Now we write the csv file to disk | |
write_csv(percentages, path = "~/Downloads/crossref_percentages.csv") | |
# Now we save the plot image | |
ggsave(crossref_fig_updated, file = "~/Downloads/crossref_fig.png") | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment