Created
October 3, 2016 10:51
-
-
Save kashif/1ed728e7621d806ee594ba3f89b8fe29 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "autocolorize" | |
input: "data" | |
input_dim: 1 | |
input_dim: 1 | |
input_dim: 514 | |
input_dim: 514 | |
layer { | |
name: "data" | |
type: "Input" | |
top: "data" | |
input_param { | |
shape: { | |
dim: 1 | |
dim: 1 | |
dim: 514 | |
dim: 514 | |
} | |
} | |
} | |
layer { | |
bottom: "data" | |
top: "conv1_1" | |
name: "conv1_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu_conv1_1" | |
type: "ReLU" | |
bottom: "conv1_1" | |
top: "conv1_1" | |
} | |
layer { | |
bottom: "conv1_1" | |
top: "conv1_2" | |
name: "conv1_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu_conv1_2" | |
type: "ReLU" | |
bottom: "conv1_2" | |
top: "conv1_2" | |
} | |
layer { | |
bottom: "conv1_2" | |
top: "pool1" | |
name: "pool1" | |
type: "Pooling" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
bottom: "pool1" | |
top: "conv2_1" | |
name: "conv2_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu_conv2_1" | |
type: "ReLU" | |
bottom: "conv2_1" | |
top: "conv2_1" | |
} | |
layer { | |
bottom: "conv2_1" | |
top: "conv2_2" | |
name: "conv2_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu_conv2_2" | |
type: "ReLU" | |
bottom: "conv2_2" | |
top: "conv2_2" | |
} | |
layer { | |
bottom: "conv2_2" | |
top: "pool2" | |
name: "pool2" | |
type: "Pooling" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
bottom: "pool2" | |
top: "conv3_1" | |
name: "conv3_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu_conv3_1" | |
type: "ReLU" | |
bottom: "conv3_1" | |
top: "conv3_1" | |
} | |
layer { | |
bottom: "conv3_1" | |
top: "conv3_2" | |
name: "conv3_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu_conv3_2" | |
type: "ReLU" | |
bottom: "conv3_2" | |
top: "conv3_2" | |
} | |
layer { | |
bottom: "conv3_2" | |
top: "conv3_3" | |
name: "conv3_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu_conv3_3" | |
type: "ReLU" | |
bottom: "conv3_3" | |
top: "conv3_3" | |
} | |
layer { | |
bottom: "conv3_3" | |
top: "pool3" | |
name: "pool3" | |
type: "Pooling" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
bottom: "pool3" | |
top: "conv4_1" | |
name: "conv4_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu_conv4_1" | |
type: "ReLU" | |
bottom: "conv4_1" | |
top: "conv4_1" | |
} | |
layer { | |
bottom: "conv4_1" | |
top: "conv4_2" | |
name: "conv4_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu_conv4_2" | |
type: "ReLU" | |
bottom: "conv4_2" | |
top: "conv4_2" | |
} | |
layer { | |
bottom: "conv4_2" | |
top: "conv4_3" | |
name: "conv4_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu_conv4_3" | |
type: "ReLU" | |
bottom: "conv4_3" | |
top: "conv4_3" | |
} | |
layer { | |
bottom: "conv4_3" | |
top: "pool4" | |
name: "pool4" | |
type: "Pooling" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
bottom: "pool4" | |
top: "conv5_1" | |
name: "conv5_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu_conv5_1" | |
type: "ReLU" | |
bottom: "conv5_1" | |
top: "conv5_1" | |
} | |
layer { | |
bottom: "conv5_1" | |
top: "conv5_2" | |
name: "conv5_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu_conv5_2" | |
type: "ReLU" | |
bottom: "conv5_2" | |
top: "conv5_2" | |
} | |
layer { | |
bottom: "conv5_2" | |
top: "conv5_3" | |
name: "conv5_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu_conv5_3" | |
type: "ReLU" | |
bottom: "conv5_3" | |
top: "conv5_3" | |
} | |
layer { | |
bottom: "conv5_3" | |
top: "pool5" | |
name: "pool5" | |
type: "Pooling" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
bottom: "pool5" | |
top: "fc6" | |
name: "fc6" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 4096 | |
pad: 3 | |
kernel_size: 7 | |
} | |
} | |
layer { | |
name: "relu_fc6" | |
type: "ReLU" | |
bottom: "fc6" | |
top: "fc6" | |
} | |
layer { | |
name: "dropout_fc6" | |
type: "Dropout" | |
bottom: "fc6" | |
top: "fc6" | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layer { | |
bottom: "fc6" | |
top: "fc7" | |
name: "fc7" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 4096 | |
pad: 0 | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "relu_fc7" | |
type: "ReLU" | |
bottom: "fc7" | |
top: "fc7" | |
} | |
layer { | |
name: "dropout_fc7" | |
type: "Dropout" | |
bottom: "fc7" | |
top: "fc7" | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layer { | |
name: "data_full" | |
type: "Pooling" | |
bottom: "data" top: "data_full" | |
pooling_param { | |
kernel_size: 4 stride: 4 | |
pool: AVE | |
pad: 0 | |
} | |
} | |
layer { | |
name: "conv1_1_full" | |
type: "Pooling" | |
bottom: "conv1_1" top: "conv1_1_full" | |
pooling_param { | |
kernel_size: 4 stride: 4 | |
pool: AVE | |
pad: 0 | |
} | |
} | |
layer { | |
name: "conv1_2_full" | |
type: "Pooling" | |
bottom: "conv1_2" top: "conv1_2_full" | |
pooling_param { | |
kernel_size: 4 stride: 4 | |
pool: AVE | |
pad: 0 | |
} | |
} | |
layer { | |
name: "conv2_1_full" | |
type: "Pooling" | |
bottom: "conv2_1" top: "conv2_1_full" | |
pooling_param { | |
kernel_size: 2 stride: 2 | |
pool: AVE | |
pad: 0 | |
} | |
} | |
layer { | |
name: "conv2_2_full" | |
type: "Pooling" | |
bottom: "conv2_2" top: "conv2_2_full" | |
pooling_param { | |
kernel_size: 2 stride: 2 | |
pool: AVE | |
pad: 0 | |
} | |
} | |
# conv4_1 upsampling | |
layer { | |
name: "conv4_1_reshaped" type: "Reshape" | |
bottom: "conv4_1" top: "conv4_1_reshaped" | |
reshape_param { | |
shape { dim: -1 dim: 1 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} | |
layer { | |
name: "conv4_1_full_reshaped" | |
type: "Deconvolution" | |
bottom: "conv4_1_reshaped" top: "conv4_1_full_reshaped" | |
convolution_param { | |
kernel_size: 4 stride: 2 | |
num_output: 1 group: 1 | |
pad: 1 | |
weight_filler: { type: "bilinear" } bias_term: false | |
} | |
param { lr_mult: 0 decay_mult: 0 } | |
} | |
layer { | |
name: "conv4_1_full" type: "Reshape" | |
bottom: "conv4_1_full_reshaped" top: "conv4_1_full" | |
reshape_param { | |
shape { dim: -1 dim: 512 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} | |
# conv4_2 upsampling | |
layer { | |
name: "conv4_2_reshaped" type: "Reshape" | |
bottom: "conv4_2" top: "conv4_2_reshaped" | |
reshape_param { | |
shape { dim: -1 dim: 1 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} | |
layer { | |
name: "conv4_2_full_reshaped" | |
type: "Deconvolution" | |
bottom: "conv4_2_reshaped" top: "conv4_2_full_reshaped" | |
convolution_param { | |
kernel_size: 4 stride: 2 | |
num_output: 1 group: 1 | |
pad: 1 | |
weight_filler: { type: "bilinear" } bias_term: false | |
} | |
param { lr_mult: 0 decay_mult: 0 } | |
} | |
layer { | |
name: "conv4_2_full" type: "Reshape" | |
bottom: "conv4_2_full_reshaped" top: "conv4_2_full" | |
reshape_param { | |
shape { dim: -1 dim: 512 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} | |
# conv4_3 upsampling | |
layer { | |
name: "conv4_3_reshaped" type: "Reshape" | |
bottom: "conv4_3" top: "conv4_3_reshaped" | |
reshape_param { | |
shape { dim: -1 dim: 1 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} | |
layer { | |
name: "conv4_3_full_reshaped" | |
type: "Deconvolution" | |
bottom: "conv4_3_reshaped" top: "conv4_3_full_reshaped" | |
convolution_param { | |
kernel_size: 4 stride: 2 | |
num_output: 1 group: 1 | |
pad: 1 | |
weight_filler: { type: "bilinear" } bias_term: false | |
} | |
param { lr_mult: 0 decay_mult: 0 } | |
} | |
layer { | |
name: "conv4_3_full" type: "Reshape" | |
bottom: "conv4_3_full_reshaped" top: "conv4_3_full" | |
reshape_param { | |
shape { dim: -1 dim: 512 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} | |
# conv5_1 upsampling | |
layer { | |
name: "conv5_1_reshaped" type: "Reshape" | |
bottom: "conv5_1" top: "conv5_1_reshaped" | |
reshape_param { | |
shape { dim: -1 dim: 1 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} | |
layer { | |
name: "conv5_1_full_reshaped" | |
type: "Deconvolution" | |
bottom: "conv5_1_reshaped" top: "conv5_1_full_reshaped" | |
convolution_param { | |
kernel_size: 8 stride: 4 | |
num_output: 1 group: 1 | |
pad: 2 | |
weight_filler: { type: "bilinear" } bias_term: false | |
} | |
param { lr_mult: 0 decay_mult: 0 } | |
} | |
layer { | |
name: "conv5_1_full" type: "Reshape" | |
bottom: "conv5_1_full_reshaped" top: "conv5_1_full" | |
reshape_param { | |
shape { dim: -1 dim: 512 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} | |
# conv5_2 upsampling | |
layer { | |
name: "conv5_2_reshaped" type: "Reshape" | |
bottom: "conv5_2" top: "conv5_2_reshaped" | |
reshape_param { | |
shape { dim: -1 dim: 1 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} | |
layer { | |
name: "conv5_2_full_reshaped" | |
type: "Deconvolution" | |
bottom: "conv5_2_reshaped" top: "conv5_2_full_reshaped" | |
convolution_param { | |
kernel_size: 8 stride: 4 | |
num_output: 1 group: 1 | |
pad: 2 | |
weight_filler: { type: "bilinear" } bias_term: false | |
} | |
param { lr_mult: 0 decay_mult: 0 } | |
} | |
layer { | |
name: "conv5_2_full" type: "Reshape" | |
bottom: "conv5_2_full_reshaped" top: "conv5_2_full" | |
reshape_param { | |
shape { dim: -1 dim: 512 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} | |
# conv5_3 upsampling | |
layer { | |
name: "conv5_3_reshaped" type: "Reshape" | |
bottom: "conv5_3" top: "conv5_3_reshaped" | |
reshape_param { | |
shape { dim: -1 dim: 1 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} | |
layer { | |
name: "conv5_3_full_reshaped" | |
type: "Deconvolution" | |
bottom: "conv5_3_reshaped" top: "conv5_3_full_reshaped" | |
convolution_param { | |
kernel_size: 8 stride: 4 | |
num_output: 1 group: 1 | |
pad: 2 | |
weight_filler: { type: "bilinear" } bias_term: false | |
} | |
param { lr_mult: 0 decay_mult: 0 } | |
} | |
layer { | |
name: "conv5_3_full" type: "Reshape" | |
bottom: "conv5_3_full_reshaped" top: "conv5_3_full" | |
reshape_param { | |
shape { dim: -1 dim: 512 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} | |
# fc6 upsampling | |
layer { | |
name: "fc6_reshaped" type: "Reshape" | |
bottom: "fc6" top: "fc6_reshaped" | |
reshape_param { | |
shape { dim: -1 dim: 1 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} | |
layer { | |
name: "fc6_full_reshaped" | |
type: "Deconvolution" | |
bottom: "fc6_reshaped" top: "fc6_full_reshaped" | |
convolution_param { | |
kernel_size: 16 stride: 8 | |
num_output: 1 group: 1 | |
pad: 4 | |
weight_filler: { type: "bilinear" } bias_term: false | |
} | |
param { lr_mult: 0 decay_mult: 0 } | |
} | |
layer { | |
name: "fc6_full" type: "Reshape" | |
bottom: "fc6_full_reshaped" top: "fc6_full" | |
reshape_param { | |
shape { dim: -1 dim: 4096 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} | |
# fc7 upsampling | |
layer { | |
name: "fc7_reshaped" type: "Reshape" | |
bottom: "fc7" top: "fc7_reshaped" | |
reshape_param { | |
shape { dim: -1 dim: 1 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} | |
layer { | |
name: "fc7_full_reshaped" | |
type: "Deconvolution" | |
bottom: "fc7_reshaped" top: "fc7_full_reshaped" | |
convolution_param { | |
kernel_size: 16 stride: 8 | |
num_output: 1 group: 1 | |
pad: 4 | |
weight_filler: { type: "bilinear" } bias_term: false | |
} | |
param { lr_mult: 0 decay_mult: 0 } | |
} | |
layer { | |
name: "fc7_full" type: "Reshape" | |
bottom: "fc7_full_reshaped" top: "fc7_full" | |
reshape_param { | |
shape { dim: -1 dim: 4096 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} | |
layer { | |
name: "dense_hypercolumn" | |
type: "Concat" | |
bottom: "data_full" | |
bottom: "conv1_1_full" | |
bottom: "conv1_2_full" | |
bottom: "conv2_1_full" | |
bottom: "conv2_2_full" | |
bottom: "conv3_1" | |
bottom: "conv3_2" | |
bottom: "conv3_3" | |
bottom: "conv4_1_full" | |
bottom: "conv4_2_full" | |
bottom: "conv4_3_full" | |
bottom: "conv5_1_full" | |
bottom: "conv5_2_full" | |
bottom: "conv5_3_full" | |
bottom: "fc6_full" | |
bottom: "fc7_full" | |
top: "dense_hypercolumn" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
bottom: "dense_hypercolumn" | |
top: "h_fc1" | |
name: "h_fc1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 1024 | |
pad: 0 | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "relu_h_fc1" | |
type: "ReLU" | |
bottom: "h_fc1" | |
top: "h_fc1" | |
} | |
layer { | |
bottom: "h_fc1" | |
top: "prediction_h" | |
name: "prediction_h" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 32 | |
pad: 0 | |
kernel_size: 1 | |
} | |
} | |
layer { | |
bottom: "h_fc1" | |
top: "prediction_c" | |
name: "prediction_c" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
type: "Convolution" | |
convolution_param { | |
num_output: 32 | |
pad: 0 | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "prediction_h_softmax" | |
type: "Softmax" | |
bottom: "prediction_h" | |
top: "prediction_h_softmax" | |
} | |
layer { | |
name: "prediction_c_softmax" | |
type: "Softmax" | |
bottom: "prediction_c" | |
top: "prediction_c_softmax" | |
} | |
# prediction_h upsample | |
layer { | |
name: "prediction_h_softmax_reshaped" type: "Reshape" | |
bottom: "prediction_h_softmax" top: "prediction_h_softmax_reshaped" | |
reshape_param { | |
shape { dim: -1 dim: 1 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} | |
layer { | |
name: "prediction_h_full_reshaped" | |
type: "Deconvolution" | |
bottom: "prediction_h_softmax_reshaped" | |
top: "prediction_h_full_reshaped" | |
convolution_param { | |
kernel_size: 8 stride: 4 | |
num_output: 1 group: 1 | |
pad: 2 | |
weight_filler: { type: "bilinear" } | |
bias_term: false | |
} | |
param { lr_mult: 0 decay_mult: 0 } | |
} | |
layer { | |
name: "prediction_h_full" type: "Reshape" | |
bottom: "prediction_h_full_reshaped" top: "prediction_h_full" | |
reshape_param { | |
shape { dim: -1 dim: 32 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} | |
# prediction_c upsample | |
layer { | |
name: "prediction_c_softmax_reshaped" type: "Reshape" | |
bottom: "prediction_c_softmax" top: "prediction_c_softmax_reshaped" | |
reshape_param { | |
shape { dim: -1 dim: 1 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} | |
layer { | |
name: "prediction_c_full_reshaped" | |
type: "Deconvolution" | |
bottom: "prediction_c_softmax_reshaped" | |
top: "prediction_c_full_reshaped" | |
convolution_param { | |
kernel_size: 8 stride: 4 | |
num_output: 1 group: 1 | |
pad: 2 | |
weight_filler: { type: "bilinear" } | |
bias_term: false | |
} | |
param { lr_mult: 0 decay_mult: 0 } | |
} | |
layer { | |
name: "prediction_c_full" type: "Reshape" | |
bottom: "prediction_c_full_reshaped" top: "prediction_c_full" | |
reshape_param { | |
shape { dim: -1 dim: 32 } | |
axis: 0 | |
num_axes: 2 | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment