-
-
Save kashif/a582f949716102cfda93ce62277a899e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from collections import defaultdict | |
import numpy as np | |
import pandas as pd | |
from rich.console import Console | |
from rich.table import Table | |
import torch | |
import torch.nn as nn | |
from datasets import load_dataset | |
from transformers import ( | |
AutoTokenizer, | |
PreTrainedModel, | |
AutoModelForCausalLM, | |
GenerationConfig, | |
AutoConfig, | |
PretrainedConfig, | |
AutoModel, | |
) | |
###### | |
# Utility functions | |
###### | |
class ScalarModelConfig(PretrainedConfig): | |
def __init__( | |
self, | |
base_model: str = "EleutherAI/pythia-160m", | |
base_config: PretrainedConfig = AutoConfig.from_pretrained( | |
"EleutherAI/pythia-160m" | |
), | |
hidden_size: int = 768, | |
bias: float = 0.0, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.base_model = base_model | |
self.base_config = base_config | |
self.hidden_size = hidden_size | |
self.bias = bias | |
def layer_init(layer, std=np.sqrt(2), bias_const=0.0): | |
torch.nn.init.normal_(layer.weight, std=std) | |
torch.nn.init.constant_(layer.bias, val=bias_const) | |
return layer | |
class ScalarModel(PreTrainedModel): | |
config_class = ScalarModelConfig | |
def __init__(self, config: ScalarModelConfig): | |
super().__init__(config) | |
self.config = config | |
self.lm_backbone = AutoModel.from_pretrained( | |
config.base_model, | |
config=self.config.base_config, | |
trust_remote_code=True, | |
) | |
self.scalar_head = layer_init( | |
nn.Linear(self.config.hidden_size, 1), | |
std=1 / np.sqrt(self.config.hidden_size + 1), | |
) | |
def forward(self, **kwargs): | |
output = self.lm_backbone(**kwargs) | |
reward = self.scalar_head(output.hidden_states[-1]) - self.config.bias | |
return reward | |
def generate(lm_backbone, queries, tokenizer, generation_config): | |
"""generate in a way that does not affect padding tokens""" | |
context_length = queries.shape[1] | |
attention_mask = queries != tokenizer.pad_token_id | |
input_ids = torch.masked_fill(queries, ~attention_mask, 0) | |
output = lm_backbone.generate( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
# position_ids=attention_mask.cumsum(1) - attention_mask.long(), # generation collapsed if this was turned on. TODO: why does generation collapse with this? | |
generation_config=generation_config, | |
return_dict_in_generate=True, | |
) | |
return torch.cat((queries, output.sequences[:, context_length:]), dim=1) | |
def forward(model, query_responses, tokenizer): | |
attention_mask = query_responses != tokenizer.pad_token_id | |
position_ids = attention_mask.cumsum(1) - attention_mask.long() | |
input_ids = torch.masked_fill(query_responses, ~attention_mask, 0) | |
return model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
return_dict=True, | |
output_hidden_states=True, | |
) | |
def print_rich_table(title: str, df: pd.DataFrame, console: Console) -> Table: | |
table = Table(show_lines=True) | |
for column in df.columns: | |
table.add_column(column) | |
for _, row in df.iterrows(): | |
table.add_row(*row.astype(str).tolist()) | |
console.rule(f"[bold red]{title}") | |
console.print(table) | |
def get_reward(model, query_responses, tokenizer): | |
attention_mask = query_responses != tokenizer.pad_token_id | |
input_ids = torch.masked_fill(query_responses, ~attention_mask, 0) | |
reward_logits = model( | |
input_ids=input_ids.to("cpu"), | |
attention_mask=attention_mask.to("cpu"), | |
return_dict=True, | |
output_hidden_states=True, | |
) | |
sequence_lengths = ( | |
torch.eq(query_responses, tokenizer.pad_token_id).long().argmax(-1) - 1 | |
).to("cpu") | |
# https://github.com/huggingface/transformers/blob/dc68a39c8111217683bf49a4912d0c9018bab33d/src/transformers/models/gpt2/modeling_gpt2.py#L1454 | |
return reward_logits[ | |
torch.arange(reward_logits.size(0), device=reward_logits.device), | |
sequence_lengths, | |
] | |
###### | |
# Start | |
###### | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/pythia-1b-deduped") | |
tokenizer.add_special_tokens({"pad_token": "[PAD]"}) | |
response_length = 80 | |
validation_generation_config = GenerationConfig( | |
max_new_tokens=response_length, | |
temperature=(0.01 + 1e-7), | |
top_k=0.0, | |
top_p=1.0, | |
do_sample=True, | |
pad_token_id=tokenizer.pad_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
) | |
sft_dataset = load_dataset( | |
"vwxyzjn/summarize_from_feedback_tldr_3_filtered_oai_preprocessing_1706381144" | |
) | |
# base | |
base_model: PreTrainedModel = AutoModelForCausalLM.from_pretrained( | |
"EleutherAI/pythia-1b-deduped" | |
).to(device) | |
scalar_model_config = ScalarModelConfig.from_pretrained( | |
"vwxyzjn/EleutherAI_pythia-6.9b-deduped__reward__tldr", | |
revision="reward__55513__1706651113", | |
trust_remote_code=True, | |
) | |
# hack to remove the path | |
# models/EleutherAI/pythia-6.9b-deduped/sft_model_55513 -> EleutherAI/pythia-6.9b-deduped | |
original_model = "/".join( | |
scalar_model_config.base_config["_name_or_path"].split("/")[1:3] | |
) | |
scalar_model_config.base_config["_name_or_path"] = original_model | |
scalar_model_config.base_model = original_model | |
rm: PreTrainedModel = ScalarModel.from_pretrained( | |
"vwxyzjn/EleutherAI_pythia-6.9b-deduped__reward__tldr", | |
revision="reward__55513__1706651113", | |
trust_remote_code=True, | |
config=scalar_model_config, | |
).to("cpu") | |
compare = "ppo_model" | |
if compare == "sft_model": | |
# # https://wandb.ai/costa-huang/tldr_summarize/runs/a0rutstb | |
# # https://huggingface.co/vwxyzjn/EleutherAI_pythia-1b-deduped__sft__tldr/tree/sft__55513__1706646024 | |
compare_model: PreTrainedModel = AutoModelForCausalLM.from_pretrained( | |
"vwxyzjn/EleutherAI_pythia-1b-deduped__sft__tldr", | |
revision="sft__55513__1706646024", | |
trust_remote_code=True, | |
).to(device) | |
elif compare == "ppo_model": | |
# https://wandb.ai/costa-huang/tldr_summarize/runs/ulekmmac | |
# https://huggingface.co/vwxyzjn/EleutherAI_pythia-1b-deduped__ppo_left_padding__tldr/tree/ppo_left_padding__55513__1706746254 | |
compare_model: PreTrainedModel = AutoModelForCausalLM.from_pretrained( | |
"vwxyzjn/EleutherAI_pythia-1b-deduped__ppo_left_padding__tldr", | |
revision="ppo_left_padding__55513__1706746254", | |
trust_remote_code=True, | |
).to(device) | |
else: | |
# https://wandb.ai/costa-huang/tldr_summarize/runs/tewm564g | |
# https://huggingface.co/vwxyzjn/EleutherAI_pythia-1b-deduped__dpo__tldr/tree/dpo__55513__1707379566 | |
compare_model: PreTrainedModel = AutoModelForCausalLM.from_pretrained( | |
"vwxyzjn/EleutherAI_pythia-1b-deduped__dpo__tldr", | |
revision="dpo__55513__1707379566", | |
trust_remote_code=True, | |
).to(device) | |
# compared_models = { | |
# "base_model": base_model, | |
# "ppo_model": ppo_model, | |
# "sft_model": sft_model, | |
# "dpo_model": dpo_model, | |
# } | |
nchecks = 4 | |
colors = { | |
0: "\sethlcolor{LightOrchid}", | |
1: "\sethlcolor{LightYellowGreen}", | |
2: "\sethlcolor{LightYellowOrange}", | |
3: "\sethlcolor{LightSalmon}", | |
} | |
top_k = 10 | |
console = Console() | |
for i in range(len(sft_dataset["validation"])): | |
table = defaultdict(list) | |
query = ( | |
torch.Tensor(sft_dataset["validation"][i : i + 1]["query_token"]) | |
.to(device) | |
.long() | |
) | |
context_length = query.shape[1] | |
query_reference_response = ( | |
torch.Tensor(sft_dataset["validation"][i]["query_reference_response_token"]) | |
.to(device) | |
.long() | |
) | |
with torch.no_grad(): | |
base_model = base_model | |
aligned_model = compare_model | |
context_length = query.shape[1] | |
aligned_model_query_response = generate( | |
aligned_model, query, tokenizer, validation_generation_config | |
) | |
aligned_model_response = aligned_model_query_response[:, context_length:] | |
base_model_query_response = generate( | |
base_model, query, tokenizer, validation_generation_config | |
) | |
base_model_response = base_model_query_response[:, context_length:] | |
reward = get_reward(rm, aligned_model_response, tokenizer) | |
aligned_model_output = forward( | |
aligned_model, aligned_model_query_response, tokenizer | |
) | |
base_model_output = forward(base_model, aligned_model_query_response, tokenizer) | |
aligned_model_logits = aligned_model_output.logits[:, context_length - 1 : -1] | |
_, aligned_model_topk_indices = aligned_model_logits.topk(top_k) | |
base_model_logits = base_model_output.logits[:, context_length - 1 : -1] | |
_, base_model_topk_indices = base_model_logits.topk(top_k) | |
aligned_model_topk_indices[:, :, 0:1].expand(-1, -1, nchecks) | |
matches = ( | |
aligned_model_topk_indices[:, :, 0:1].expand(-1, -1, nchecks) | |
== base_model_topk_indices[:, :, 0:nchecks] | |
) | |
matched = matches.sum(2) | |
match_idx = matches.float().argmax(2) | |
final_matches = torch.where(matched > 0, match_idx, nchecks - 1) | |
stats = torch.stack([(final_matches == i).sum(1) for i in range(nchecks)]).T | |
final_matches = final_matches.tolist() | |
aligned_model_response = aligned_model_response.tolist() | |
table["type"].append("Query") | |
table["content"].append(tokenizer.decode(query[0], skip_special_tokens=True)) | |
table["type"].append(f"{compare} Response") | |
table["content"].append( | |
"".join( | |
[ | |
f"{colors[jt]}" "\hl{" f"{tokenizer.decode(it)}" "}" | |
for it, jt in zip(aligned_model_response[0], final_matches[0]) | |
] | |
) | |
) | |
table["type"].append("score (RM)") | |
table["content"].append(reward[0][0].item()) | |
table["type"].append("Matched Color Counts") | |
table["content"].append(stats[0].cpu().numpy()) | |
table["type"].append("Base Model Response") | |
table["content"].append( | |
tokenizer.decode(base_model_response[0], skip_special_tokens=True) | |
) | |
df = pd.DataFrame(table) | |
print(df.to_latex(index=False, header=False)) | |
if input("Continue? (press `n` to stop) ") == "n": | |
break |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment