Last active
January 12, 2021 13:46
-
-
Save kastnerkyle/816134462577399ee8b2 to your computer and use it in GitHub Desktop.
Theano optimizers
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Authors: Kyle Kastner | |
# License: BSD 3-clause | |
import theano.tensor as T | |
import numpy as np | |
import theano | |
class rmsprop(object): | |
""" | |
RMSProp with nesterov momentum and gradient rescaling | |
""" | |
def __init__(self, params): | |
self.running_square_ = [theano.shared(np.zeros_like(p.get_value())) | |
for p in params] | |
self.running_avg_ = [theano.shared(np.zeros_like(p.get_value())) | |
for p in params] | |
self.memory_ = [theano.shared(np.zeros_like(p.get_value())) | |
for p in params] | |
def updates(self, params, grads, learning_rate, momentum, rescale=5.): | |
grad_norm = T.sqrt(sum(map(lambda x: T.sqr(x).sum(), grads))) | |
not_finite = T.or_(T.isnan(grad_norm), T.isinf(grad_norm)) | |
grad_norm = T.sqrt(grad_norm) | |
scaling_num = rescale | |
scaling_den = T.maximum(rescale, grad_norm) | |
# Magic constants | |
combination_coeff = 0.9 | |
minimum_grad = 1E-4 | |
updates = [] | |
for n, (param, grad) in enumerate(zip(params, grads)): | |
grad = T.switch(not_finite, 0.1 * param, | |
grad * (scaling_num / scaling_den)) | |
old_square = self.running_square_[n] | |
new_square = combination_coeff * old_square + ( | |
1. - combination_coeff) * T.sqr(grad) | |
old_avg = self.running_avg_[n] | |
new_avg = combination_coeff * old_avg + ( | |
1. - combination_coeff) * grad | |
rms_grad = T.sqrt(new_square - new_avg ** 2) | |
rms_grad = T.maximum(rms_grad, minimum_grad) | |
memory = self.memory_[n] | |
update = momentum * memory - learning_rate * grad / rms_grad | |
update2 = momentum * momentum * memory - ( | |
1 + momentum) * learning_rate * grad / rms_grad | |
updates.append((old_square, new_square)) | |
updates.append((old_avg, new_avg)) | |
updates.append((memory, update)) | |
updates.append((param, param + update2)) | |
return updates | |
class sgd_nesterov(object): | |
def __init__(self, params): | |
self.memory_ = [theano.shared(np.zeros_like(p.get_value())) | |
for p in params] | |
def updates(self, params, grads, learning_rate, momentum): | |
updates = [] | |
for n, (param, grad) in enumerate(zip(params, grads)): | |
memory = self.memory_[n] | |
update = momentum * memory - learning_rate * grad | |
update2 = momentum * momentum * memory - ( | |
1 + momentum) * learning_rate * grad | |
updates.append((memory, update)) | |
updates.append((param, param + update2)) | |
return updates | |
class sgd(object): | |
# Only here for API conformity with other optimizers | |
def __init__(self, params): | |
pass | |
def updates(self, params, grads, learning_rate): | |
updates = [] | |
for n, (param, grad) in enumerate(zip(params, grads)): | |
updates.append((param, param - learning_rate * grad)) | |
return updates | |
""" | |
Usage: | |
grads = T.grad(cost, self.params) | |
#opt = sgd_nesterov(self.params) | |
opt = rmsprop(self.params) | |
updates = opt.updates(self.params, grads, | |
learning_rate / np.cast['float32'](self.batch_size), | |
momentum) | |
""" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment