Last active
September 4, 2019 18:59
-
-
Save kastnerkyle/9959576 to your computer and use it in GitHub Desktop.
Discrete hmm implementation - for learning purposes only!
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# (C) Kyle Kastner, June 2014 | |
# License: BSD 3 clause | |
import numpy as np | |
class dhmm: | |
def __init__(self, n_states, initial_prob=None, | |
n_iter=100, random_seed=1999): | |
# Initial state probabilities p(s_0)=pi[s_0]. | |
# Transition matrix p(s_j|s_i)=t[s_i][s_j] | |
# Emission matrix p(o_i|s_i)=e[s_i][o_i] | |
self.n_states = n_states | |
self.n_iter = n_iter | |
self.random_seed = random_seed | |
self.random_state = np.random.RandomState(random_seed) | |
if initial_prob is None: | |
self.initial_prob = np.array([1. / n_states] * n_states) | |
else: | |
self.initial_prob = initial_prob | |
def _forward(self, X, transition_prob, emission_prob): | |
# Eventually convert to logspace | |
n_states, n_steps = emission_prob.shape | |
forward = np.zeros((n_states, n_steps + 1)) | |
log_likelihood = 0. | |
forward[:, 0] = self.initial_prob | |
for i in range(n_steps): | |
f_i = forward[:, i] | |
e_i = emission_prob[:, X[i]] | |
forward[:, i + 1] = np.dot(f_i[None], transition_prob) * e_i | |
forward_sum = np.sum(forward[:, i + 1]) | |
forward[:, i + 1] = forward[:, i + 1] / forward_sum | |
log_likelihood += np.log(forward_sum) | |
return log_likelihood, forward | |
def _backward(self, X, transition_prob, emission_prob): | |
# Eventually convert to logspace | |
n_states, n_steps = emission_prob.shape | |
backward = np.zeros((n_states, n_steps + 1)) | |
backward[:, -1] = 1. | |
for i in range(n_steps, 0, -1): | |
b_i = backward[:, i] | |
e_p = emission_prob[:, X[i - 1]] | |
backward[:, i - 1] = np.dot(transition_prob * e_p, | |
b_i[None].T).ravel() | |
backward[:, i - 1] = backward[:, i - 1] / np.sum(backward[:, i - 1]) | |
return backward | |
def _baum_welch(self, X, transition_prob, emission_prob, initial_prob=None): | |
for i in range(len(X)): | |
X_i = X[i] | |
n_states, n_steps = emission_prob.shape | |
old_transition = transition_prob | |
old_emission = emission_prob | |
transition = np.ones_like(old_transition) | |
emission = np.ones_like(old_emission) | |
ll, forward = self._forward(X_i, old_transition, old_emission) | |
backward = self._backward(X_i, old_transition, old_emission) | |
probs = forward * backward | |
probs = probs / np.sum(probs, axis=0) | |
theta = np.zeros((n_states, n_states, n_steps)) | |
for a in range(n_states): | |
for b in range(n_states): | |
for t in range(n_steps): | |
theta[a, b, t] = (forward[a, t] * | |
backward[b, t + 1] * | |
old_transition[a, b] * | |
old_emission[b, X_i[t]]) | |
for a in range(n_states): | |
for b in range(n_states): | |
transition[a, b] = np.sum( | |
theta[a, b, :]) / np.sum(probs[a, :]) | |
transition = transition / np.sum(transition, axis=1) | |
for a in range(n_states): | |
for t in range(n_steps): | |
right_ind = np.array(np.where(X_i == t)) + 1 | |
emission[a, t] = np.sum(probs[a, right_ind]) / np.sum( | |
probs[a, 1:]) | |
emission = emission / np.sum(emission, axis=1)[:, None] | |
return transition, emission | |
def _setup(self, X): | |
# Samples, Time, Features | |
n_steps = X.shape[1] | |
n_states = self.n_states | |
self.initial_prob_ = np.ones((n_states,)) | |
self.initial_prob_ /= np.sum(self.initial_prob_) | |
self.transition_prob_ = np.ones((n_states, n_states)) | |
self.transition_prob_ /= np.sum(self.transition_prob_, axis=1) | |
self.emission_prob_ = np.ones((n_states, n_steps)) | |
self.transition_prob_ /= np.sum(self.emission_prob_, axis=1) | |
def fit(self, X, y=None): | |
self._setup(X) | |
for n in range(self.n_iter): | |
self.partial_fit(X) | |
def partial_fit(self, X): | |
if not hasattr(self, 'transition_prob_'): | |
self._setup(X) | |
t = self.transition_prob_ | |
e = self.emission_prob_ | |
t, e = self._baum_welch(X, t, e) | |
self.transition_prob_ = t | |
self.emission_prob_ = e | |
def score(self, X): | |
scores = [] | |
for i in range(len(X)): | |
X_i = X[i] | |
n_states, n_steps = self.emission_prob_.shape | |
ll, forward = self._forward(X_i, self.transition_prob_, | |
self.emission_prob_) | |
scores.append(ll) | |
return np.array(scores) | |
if __name__ == "__main__": | |
n_steps = 50 | |
rs = np.random.RandomState(1999) | |
X1 = rs.randn(1, n_steps) | |
X1[X1 > 0] = 1. | |
X1[X1 <= 0] = 0 | |
X2 = rs.rand(1, n_steps) | |
X2[X2 > .15] = 1. | |
X2[X2 <= 0.85] = 0. | |
m = dhmm(2) | |
m.fit(X1) | |
print(m.score(X1)) | |
print(m.score(X2)) | |
m = dhmm(2) | |
m.fit(X2) | |
print(m.score(X1)) | |
print(m.score(X2)) | |
m = dhmm(2) | |
for i in range(100): | |
m.partial_fit(X2) | |
print(m.score(X1)) | |
print(m.score(X2)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment