Created
June 22, 2023 03:26
-
-
Save kayomarz/2e5498a033c14e128c78616247ad7959 to your computer and use it in GitHub Desktop.
A Common Lisp port of the Möller–Trumbore ray-triangle intersection algorithm originally authored in C.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
;;; A Common Lisp port of the Möller–Trumbore ray-triangle intersection | |
;;; algorithm originally authored in C. | |
;;; Introduction | |
;;; ============ | |
;;; The Möller–Trumbore ray-triangle intersection algorithm is credited to its | |
;;; inventors Tomas Möller and Ben Trumbore. | |
;;; The original C code was accessed from Möller Trumbore's article: `Practical | |
;;; Analysis of Optimized Ray-Triangle Intersection`. Link: | |
;;; https://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/raytri/ | |
;; We extend our gratitude and thanks to Tomas Möller, not only for his | |
;; insightful article but also for making the source code publicly accessible | |
;; under a permissive license. | |
;;; Common Lisp Port | |
;;; ================ | |
;;; `intersect-triangle` below, is a port of `intersect_triangle` from raytri.c | |
;;; including the original copyright messages that were found. | |
;; Ray-Triangle Intersection Test Routines | |
;; Different optimizations of my and Ben Trumbore's | |
;; code from journals of graphics tools (JGT) | |
;; http://www.acm.org/jgt/ | |
;; by Tomas Moller, May 2000 | |
;; Copyright 2020 Tomas Akenine-Möller | |
;; Permission is hereby granted, free of charge, to any person obtaining a copy | |
;; of this software and associated documentation files (the "Software"), to deal | |
;; in the Software without restriction, including without limitation the rights | |
;; to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
;; copies of the Software, and to permit persons to whom the Software is | |
;; furnished to do so, subject to the following conditions: | |
;; The above copyright notice and this permission notice shall be included in | |
;; all copies or substantial portions of the Software. | |
;; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
;; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
;; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
;; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
;; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
;; OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
;; SOFTWARE. | |
(defun intersect-triangle (tri ray) | |
(let ((epsilon 0.000001)) | |
(let ((orig (origin.geometry.ray:origin ray)) | |
(dir (origin.geometry.ray:direction ray)) | |
(vert0 (origin.geometry.triangle::a tri)) | |
(vert1 (origin.geometry.triangle::b tri)) | |
(vert2 (origin.geometry.triangle::c tri))) | |
(let* ( | |
;; find vectors for two edges sharing vert0 | |
(edge1 (p:- vert1 vert0)) | |
(edge2 (p:- vert2 vert0)) | |
;; begin calculating determinant - also used to calculate U | |
(pvec (p:cross dir edge2)) | |
;; if determinant is near zero, ray lies in plane of triangle | |
(det (p:dot edge1 pvec))) | |
(when (and (> det (- epsilon)) (< det epsilon)) | |
(return-from intersect-triangle nil)) | |
(let* ((inv-det (/ 1.0 det)) | |
;; calculate distance from vert0 to ray origin | |
(tvec (p:- orig vert0)) | |
;; calculate U and test bounds | |
(u (* (p:dot tvec pvec) inv-det))) | |
(when (or (< u 0.0) (> u 1.0)) | |
(return-from intersect-triangle nil)) | |
(let* (;;prepare to test V | |
(qvec (p:cross tvec edge1)) | |
;; calculate V parameter and test bounds | |
(v (* (p:dot dir qvec) inv-det))) | |
(when (or (< v 0.0) (> (+ u v) 1.0)) | |
(return-from intersect-triangle nil)) | |
(let (;; calculate t, ray intersects triangle | |
;; (using `t_` since `t` clashes in Common Lisp) | |
(t_ (* (p:dot edge2 qvec) inv-det))) | |
;; The original C code returns 1 if intersection occurs and 0 | |
;; otherwise, while the actual values computed by the function, | |
;; namely t, u, v are returned indirectly via pointer arguments | |
;; whoose contents are populated by the function. | |
;; Instead, we return `(values t u v)` if intersection occurs and | |
;; nil otherwise. | |
(values t_ u v)))))))) | |
;;; The original C code - raytri.c | |
;;; ============================== | |
;;; For reference and safekeeping, below is copy of the original author's source | |
;;; code - raytri.c - taken from: | |
;;; https://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/raytri/raytri.c | |
;;; Also see Tomas Möller's insightful article: | |
;;; https://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/raytri/ | |
;; Again, We extend our gratitude and thanks to Tomas Möller, not only for his | |
;; insightful article but also for making the source code publicly accessible | |
;; under a permissive license. | |
;;; /* Ray-Triangle Intersection Test Routines */ | |
;;; /* Different optimizations of my and Ben Trumbore's */ | |
;;; /* code from journals of graphics tools (JGT) */ | |
;;; /* http://www.acm.org/jgt/ */ | |
;;; /* by Tomas Moller, May 2000 */ | |
;;; | |
;;; /* | |
;;; Copyright 2020 Tomas Akenine-Möller | |
;;; | |
;;; Permission is hereby granted, free of charge, to any person obtaining a copy | |
;;; of this software and associated documentation files (the "Software"), to | |
;;; deal in the Software without restriction, including without limitation the | |
;;; rights to use, copy, modify, merge, publish, distribute, sublicense, and/or | |
;;; sell copies of the Software, and to permit persons to whom the Software is | |
;;; furnished to do so, subject to the following conditions: | |
;;; The above copyright notice and this permission notice shall be included in | |
;;; all copies or substantial portions of the Software. | |
;;; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
;;; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
;;; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
;;; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
;;; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |
;;; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | |
;;; IN THE SOFTWARE. | |
;;; */ | |
;; | |
;; #include <math.h> | |
;; | |
;; #define EPSILON 0.000001 | |
;; #define CROSS(dest,v1,v2) \ | |
;; dest[0]=v1[1]*v2[2]-v1[2]*v2[1]; \ | |
;; dest[1]=v1[2]*v2[0]-v1[0]*v2[2]; \ | |
;; dest[2]=v1[0]*v2[1]-v1[1]*v2[0]; | |
;; #define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2]) | |
;; #define SUB(dest,v1,v2) \ | |
;; dest[0]=v1[0]-v2[0]; \ | |
;; dest[1]=v1[1]-v2[1]; \ | |
;; dest[2]=v1[2]-v2[2]; | |
;; | |
;; /* the original jgt code */ | |
;; int intersect_triangle(double orig[3], double dir[3], | |
;; double vert0[3], double vert1[3], double vert2[3], | |
;; double *t, double *u, double *v) | |
;; { | |
;; double edge1[3], edge2[3], tvec[3], pvec[3], qvec[3]; | |
;; double det,inv_det; | |
;; | |
;; /* find vectors for two edges sharing vert0 */ | |
;; SUB(edge1, vert1, vert0); | |
;; SUB(edge2, vert2, vert0); | |
;; | |
;; /* begin calculating determinant - also used to calculate U parameter */ | |
;; CROSS(pvec, dir, edge2); | |
;; | |
;; /* if determinant is near zero, ray lies in plane of triangle */ | |
;; det = DOT(edge1, pvec); | |
;; | |
;; if (det > -EPSILON && det < EPSILON) | |
;; return 0; | |
;; inv_det = 1.0 / det; | |
;; | |
;; /* calculate distance from vert0 to ray origin */ | |
;; SUB(tvec, orig, vert0); | |
;; | |
;; /* calculate U parameter and test bounds */ | |
;; *u = DOT(tvec, pvec) * inv_det; | |
;; if (*u < 0.0 || *u > 1.0) | |
;; return 0; | |
;; | |
;; /* prepare to test V parameter */ | |
;; CROSS(qvec, tvec, edge1); | |
;; | |
;; /* calculate V parameter and test bounds */ | |
;; *v = DOT(dir, qvec) * inv_det; | |
;; if (*v < 0.0 || *u + *v > 1.0) | |
;; return 0; | |
;; | |
;; /* calculate t, ray intersects triangle */ | |
;; *t = DOT(edge2, qvec) * inv_det; | |
;; | |
;; return 1; | |
;; } | |
;; | |
;; | |
;; /* code rewritten to do tests on the sign of the determinant */ | |
;; /* the division is at the end in the code */ | |
;; int intersect_triangle1(double orig[3], double dir[3], | |
;; double vert0[3], double vert1[3], double vert2[3], | |
;; double *t, double *u, double *v) | |
;; { | |
;; double edge1[3], edge2[3], tvec[3], pvec[3], qvec[3]; | |
;; double det,inv_det; | |
;; | |
;; /* find vectors for two edges sharing vert0 */ | |
;; SUB(edge1, vert1, vert0); | |
;; SUB(edge2, vert2, vert0); | |
;; | |
;; /* begin calculating determinant - also used to calculate U parameter */ | |
;; CROSS(pvec, dir, edge2); | |
;; | |
;; /* if determinant is near zero, ray lies in plane of triangle */ | |
;; det = DOT(edge1, pvec); | |
;; | |
;; if (det > EPSILON) | |
;; { | |
;; /* calculate distance from vert0 to ray origin */ | |
;; SUB(tvec, orig, vert0); | |
;; | |
;; /* calculate U parameter and test bounds */ | |
;; *u = DOT(tvec, pvec); | |
;; if (*u < 0.0 || *u > det) | |
;; return 0; | |
;; | |
;; /* prepare to test V parameter */ | |
;; CROSS(qvec, tvec, edge1); | |
;; | |
;; /* calculate V parameter and test bounds */ | |
;; *v = DOT(dir, qvec); | |
;; if (*v < 0.0 || *u + *v > det) | |
;; return 0; | |
;; | |
;; } | |
;; else if(det < -EPSILON) | |
;; { | |
;; /* calculate distance from vert0 to ray origin */ | |
;; SUB(tvec, orig, vert0); | |
;; | |
;; /* calculate U parameter and test bounds */ | |
;; *u = DOT(tvec, pvec); | |
;; /* printf("*u=%f\n",(float)*u); */ | |
;; /* printf("det=%f\n",det); */ | |
;; if (*u > 0.0 || *u < det) | |
;; return 0; | |
;; | |
;; /* prepare to test V parameter */ | |
;; CROSS(qvec, tvec, edge1); | |
;; | |
;; /* calculate V parameter and test bounds */ | |
;; *v = DOT(dir, qvec) ; | |
;; if (*v > 0.0 || *u + *v < det) | |
;; return 0; | |
;; } | |
;; else return 0; /* ray is parallell to the plane of the triangle */ | |
;; | |
;; | |
;; inv_det = 1.0 / det; | |
;; | |
;; /* calculate t, ray intersects triangle */ | |
;; *t = DOT(edge2, qvec) * inv_det; | |
;; (*u) *= inv_det; | |
;; (*v) *= inv_det; | |
;; | |
;; return 1; | |
;; } | |
;; | |
;; /* code rewritten to do tests on the sign of the determinant */ | |
;; /* the division is before the test of the sign of the det */ | |
;; int intersect_triangle2(double orig[3], double dir[3], | |
;; double vert0[3], double vert1[3], double vert2[3], | |
;; double *t, double *u, double *v) | |
;; { | |
;; double edge1[3], edge2[3], tvec[3], pvec[3], qvec[3]; | |
;; double det,inv_det; | |
;; | |
;; /* find vectors for two edges sharing vert0 */ | |
;; SUB(edge1, vert1, vert0); | |
;; SUB(edge2, vert2, vert0); | |
;; | |
;; /* begin calculating determinant - also used to calculate U parameter */ | |
;; CROSS(pvec, dir, edge2); | |
;; | |
;; /* if determinant is near zero, ray lies in plane of triangle */ | |
;; det = DOT(edge1, pvec); | |
;; | |
;; /* calculate distance from vert0 to ray origin */ | |
;; SUB(tvec, orig, vert0); | |
;; inv_det = 1.0 / det; | |
;; | |
;; if (det > EPSILON) | |
;; { | |
;; /* calculate U parameter and test bounds */ | |
;; *u = DOT(tvec, pvec); | |
;; if (*u < 0.0 || *u > det) | |
;; return 0; | |
;; | |
;; /* prepare to test V parameter */ | |
;; CROSS(qvec, tvec, edge1); | |
;; | |
;; /* calculate V parameter and test bounds */ | |
;; *v = DOT(dir, qvec); | |
;; if (*v < 0.0 || *u + *v > det) | |
;; return 0; | |
;; | |
;; } | |
;; else if(det < -EPSILON) | |
;; { | |
;; /* calculate U parameter and test bounds */ | |
;; *u = DOT(tvec, pvec); | |
;; if (*u > 0.0 || *u < det) | |
;; return 0; | |
;; | |
;; /* prepare to test V parameter */ | |
;; CROSS(qvec, tvec, edge1); | |
;; | |
;; /* calculate V parameter and test bounds */ | |
;; *v = DOT(dir, qvec) ; | |
;; if (*v > 0.0 || *u + *v < det) | |
;; return 0; | |
;; } | |
;; else return 0; /* ray is parallell to the plane of the triangle */ | |
;; | |
;; /* calculate t, ray intersects triangle */ | |
;; *t = DOT(edge2, qvec) * inv_det; | |
;; (*u) *= inv_det; | |
;; (*v) *= inv_det; | |
;; | |
;; return 1; | |
;; } | |
;; | |
;; /* code rewritten to do tests on the sign of the determinant */ | |
;; /* the division is before the test of the sign of the det */ | |
;; /* and one CROSS has been moved out from the if-else if-else */ | |
;; int intersect_triangle3(double orig[3], double dir[3], | |
;; double vert0[3], double vert1[3], double vert2[3], | |
;; double *t, double *u, double *v) | |
;; { | |
;; double edge1[3], edge2[3], tvec[3], pvec[3], qvec[3]; | |
;; double det,inv_det; | |
;; | |
;; /* find vectors for two edges sharing vert0 */ | |
;; SUB(edge1, vert1, vert0); | |
;; SUB(edge2, vert2, vert0); | |
;; | |
;; /* begin calculating determinant - also used to calculate U parameter */ | |
;; CROSS(pvec, dir, edge2); | |
;; | |
;; /* if determinant is near zero, ray lies in plane of triangle */ | |
;; det = DOT(edge1, pvec); | |
;; | |
;; /* calculate distance from vert0 to ray origin */ | |
;; SUB(tvec, orig, vert0); | |
;; inv_det = 1.0 / det; | |
;; | |
;; CROSS(qvec, tvec, edge1); | |
;; | |
;; if (det > EPSILON) | |
;; { | |
;; *u = DOT(tvec, pvec); | |
;; if (*u < 0.0 || *u > det) | |
;; return 0; | |
;; | |
;; /* calculate V parameter and test bounds */ | |
;; *v = DOT(dir, qvec); | |
;; if (*v < 0.0 || *u + *v > det) | |
;; return 0; | |
;; | |
;; } | |
;; else if(det < -EPSILON) | |
;; { | |
;; /* calculate U parameter and test bounds */ | |
;; *u = DOT(tvec, pvec); | |
;; if (*u > 0.0 || *u < det) | |
;; return 0; | |
;; | |
;; /* calculate V parameter and test bounds */ | |
;; *v = DOT(dir, qvec) ; | |
;; if (*v > 0.0 || *u + *v < det) | |
;; return 0; | |
;; } | |
;; else return 0; /* ray is parallell to the plane of the triangle */ | |
;; | |
;; *t = DOT(edge2, qvec) * inv_det; | |
;; (*u) *= inv_det; | |
;; (*v) *= inv_det; | |
;; | |
;; return 1; | |
;; } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment