Created
March 5, 2018 08:41
-
-
Save kbuzzard/50a650e6df7e712138456facb5a81f22 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import analysis.topology.continuity | |
universes u v | |
local attribute [class] topological_space.is_open | |
structure presheaf_of_types (α : Type*) [T : topological_space α] := | |
(F : Π U : set α, T.is_open U → Type*) | |
(res : ∀ (U V : set α) (OU : T.is_open U) (OV : T.is_open V) (H : V ⊆ U), | |
(F U OU) → (F V OV)) | |
(Hcomp : ∀ (U V W : set α) (OU : T.is_open U) (OV : T.is_open V) (OW : T.is_open W) | |
(HUV : V ⊆ U) (HVW : W ⊆ V), | |
(res U W OU OW (set.subset.trans HVW HUV)) = (res V W OV _ HVW) ∘ (res U V _ _ HUV) ) | |
definition presheaf_of_types_pushforward | |
{α : Type*} [Tα : topological_space α] | |
{β : Type*} [Tβ : topological_space β] | |
(f : α → β) | |
(fcont: continuous f) | |
(FPT : presheaf_of_types α) | |
: presheaf_of_types β := | |
{ F := λ V OV, FPT.F (f ⁻¹' V) (fcont V OV), | |
res := λ V₁ V₂ OV₁ OV₂ H, | |
FPT.res (f ⁻¹' V₁) (f⁻¹' V₂) (fcont V₁ OV₁) (fcont V₂ OV₂) (λ x Hx,H Hx), | |
Hcomp := λ Uβ Vβ Wβ OUβ OVβ OWβ HUV HVW,rfl -- assertion violation | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment