Skip to content

Instantly share code, notes, and snippets.

@kctam
Created December 16, 2018 14:40
Show Gist options
  • Save kctam/4c11affba170625f27bc73d4d453136b to your computer and use it in GitHub Desktop.
Save kctam/4c11affba170625f27bc73d4d453136b to your computer and use it in GitHub Desktop.
Exploring an ERC20 Token
pragma solidity ^0.4.24;
pragma experimental "v0.5.0";
import "./zeppelin/SafeMath.sol";
/**
* @title PAXImplementation
* @dev this contract is a Pausable ERC20 token with Burn and Mint
* controleld by a central SupplyController. By implementing PaxosImplementation
* this contract also includes external methods for setting
* a new implementation contract for the Proxy.
* NOTE: The storage defined here will actually be held in the Proxy
* contract and all calls to this contract should be made through
* the proxy, including admin actions done as owner or supplyController.
* Any call to transfer against this contract should fail
* with insufficient funds since no tokens will be issued there.
*/
contract PAXImplementation {
/**
* MATH
*/
using SafeMath for uint256;
/**
* DATA
*/
// INITIALIZATION DATA
bool private initialized = false;
// ERC20 BASIC DATA
mapping(address => uint256) internal balances;
uint256 internal totalSupply_;
string public constant name = "PAX"; // solium-disable-line uppercase
string public constant symbol = "PAX"; // solium-disable-line uppercase
uint8 public constant decimals = 18; // solium-disable-line uppercase
// ERC20 DATA
mapping (address => mapping (address => uint256)) internal allowed;
// OWNER DATA
address public owner;
// PAUSABILITY DATA
bool public paused = false;
// LAW ENFORCEMENT DATA
address public lawEnforcementRole;
mapping(address => bool) internal frozen;
// SUPPLY CONTROL DATA
address public supplyController;
/**
* EVENTS
*/
// ERC20 BASIC EVENTS
event Transfer(address indexed from, address indexed to, uint256 value);
// ERC20 EVENTS
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
// OWNABLE EVENTS
event OwnershipTransferred(
address indexed oldOwner,
address indexed newOwner
);
// PAUSABLE EVENTS
event Pause();
event Unpause();
// LAW ENFORCEMENT EVENTS
event AddressFrozen(address indexed addr);
event AddressUnfrozen(address indexed addr);
event FrozenAddressWiped(address indexed addr);
event LawEnforcementRoleSet (
address indexed oldLawEnforcementRole,
address indexed newLawEnforcementRole
);
// SUPPLY CONTROL EVENTS
event SupplyIncreased(address indexed to, uint256 value);
event SupplyDecreased(address indexed from, uint256 value);
event SupplyControllerSet(
address indexed oldSupplyController,
address indexed newSupplyController
);
/**
* FUNCTIONALITY
*/
// INITIALIZATION FUNCTIONALITY
/**
* @dev sets 0 initials tokens, the owner, and the supplyController.
* this serves as the constructor for the proxy but compiles to the
* memory model of the Implementation contract.
*/
function initialize() public {
require(!initialized, "already initialized");
owner = msg.sender;
lawEnforcementRole = address(0);
totalSupply_ = 0;
supplyController = msg.sender;
initialized = true;
}
/**
* The constructor is used here to ensure that the implementation
* contract is initialized. An uncontrolled implementation
* contract might lead to misleading state
* for users who accidentally interact with it.
*/
constructor() public {
initialize();
pause();
}
// ERC20 BASIC FUNCTIONALITY
/**
* @dev Total number of tokens in existence
*/
function totalSupply() public view returns (uint256) {
return totalSupply_;
}
/**
* @dev Transfer token for a specified address
* @param _to The address to transfer to.
* @param _value The amount to be transferred.
*/
function transfer(address _to, uint256 _value) public whenNotPaused returns (bool) {
require(_to != address(0), "cannot transfer to address zero");
require(!frozen[_to] && !frozen[msg.sender], "address frozen");
require(_value <= balances[msg.sender], "insufficient funds");
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
emit Transfer(msg.sender, _to, _value);
return true;
}
/**
* @dev Gets the balance of the specified address.
* @param _addr The address to query the the balance of.
* @return An uint256 representing the amount owned by the passed address.
*/
function balanceOf(address _addr) public view returns (uint256) {
return balances[_addr];
}
// ERC20 FUNCTIONALITY
/**
* @dev Transfer tokens from one address to another
* @param _from address The address which you want to send tokens from
* @param _to address The address which you want to transfer to
* @param _value uint256 the amount of tokens to be transferred
*/
function transferFrom(
address _from,
address _to,
uint256 _value
)
public
whenNotPaused
returns (bool)
{
require(_to != address(0), "cannot transfer to address zero");
require(!frozen[_to] && !frozen[_from] && !frozen[msg.sender], "address frozen");
require(_value <= balances[_from], "insufficient funds");
require(_value <= allowed[_from][msg.sender], "insufficient allowance");
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
emit Transfer(_from, _to, _value);
return true;
}
/**
* @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
* Beware that changing an allowance with this method brings the risk that someone may use both the old
* and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this
* race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
* @param _spender The address which will spend the funds.
* @param _value The amount of tokens to be spent.
*/
function approve(address _spender, uint256 _value) public whenNotPaused returns (bool) {
require(!frozen[_spender] && !frozen[msg.sender], "address frozen");
allowed[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
/**
* @dev Function to check the amount of tokens that an owner allowed to a spender.
* @param _owner address The address which owns the funds.
* @param _spender address The address which will spend the funds.
* @return A uint256 specifying the amount of tokens still available for the spender.
*/
function allowance(
address _owner,
address _spender
)
public
view
returns (uint256)
{
return allowed[_owner][_spender];
}
// OWNER FUNCTIONALITY
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(msg.sender == owner, "onlyOwner");
_;
}
/**
* @dev Allows the current owner to transfer control of the contract to a newOwner.
* @param _newOwner The address to transfer ownership to.
*/
function transferOwnership(address _newOwner) public onlyOwner {
require(_newOwner != address(0), "cannot transfer ownership to address zero");
emit OwnershipTransferred(owner, _newOwner);
owner = _newOwner;
}
// PAUSABILITY FUNCTIONALITY
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*/
modifier whenNotPaused() {
require(!paused, "whenNotPaused");
_;
}
/**
* @dev called by the owner to pause, triggers stopped state
*/
function pause() public onlyOwner {
require(!paused, "already paused");
paused = true;
emit Pause();
}
/**
* @dev called by the owner to unpause, returns to normal state
*/
function unpause() public onlyOwner {
require(paused, "already unpaused");
paused = false;
emit Unpause();
}
// LAW ENFORCEMENT FUNCTIONALITY
/**
* @dev Sets a new law enforcement role address.
* @param _newLawEnforcementRole The new address allowed to freeze/unfreeze addresses and seize their tokens.
*/
function setLawEnforcementRole(address _newLawEnforcementRole) public {
require(msg.sender == lawEnforcementRole || msg.sender == owner, "only lawEnforcementRole or Owner");
emit LawEnforcementRoleSet(lawEnforcementRole, _newLawEnforcementRole);
lawEnforcementRole = _newLawEnforcementRole;
}
modifier onlyLawEnforcementRole() {
require(msg.sender == lawEnforcementRole, "onlyLawEnforcementRole");
_;
}
/**
* @dev Freezes an address balance from being transferred.
* @param _addr The new address to freeze.
*/
function freeze(address _addr) public onlyLawEnforcementRole {
require(!frozen[_addr], "address already frozen");
frozen[_addr] = true;
emit AddressFrozen(_addr);
}
/**
* @dev Unfreezes an address balance allowing transfer.
* @param _addr The new address to unfreeze.
*/
function unfreeze(address _addr) public onlyLawEnforcementRole {
require(frozen[_addr], "address already unfrozen");
frozen[_addr] = false;
emit AddressUnfrozen(_addr);
}
/**
* @dev Wipes the balance of a frozen address, burning the tokens
* and setting the approval to zero.
* @param _addr The new frozen address to wipe.
*/
function wipeFrozenAddress(address _addr) public onlyLawEnforcementRole {
require(frozen[_addr], "address is not frozen");
uint256 _balance = balances[_addr];
balances[_addr] = 0;
totalSupply_ = totalSupply_.sub(_balance);
emit FrozenAddressWiped(_addr);
emit SupplyDecreased(_addr, _balance);
emit Transfer(_addr, address(0), _balance);
}
/**
* @dev Gets the balance of the specified address.
* @param _addr The address to check if frozen.
* @return A bool representing whether the given address is frozen.
*/
function isFrozen(address _addr) public view returns (bool) {
return frozen[_addr];
}
// SUPPLY CONTROL FUNCTIONALITY
/**
* @dev Sets a new supply controller address.
* @param _newSupplyController The address allowed to burn/mint tokens to control supply.
*/
function setSupplyController(address _newSupplyController) public {
require(msg.sender == supplyController || msg.sender == owner, "only SupplyController or Owner");
require(_newSupplyController != address(0), "cannot set supply controller to address zero");
emit SupplyControllerSet(supplyController, _newSupplyController);
supplyController = _newSupplyController;
}
modifier onlySupplyController() {
require(msg.sender == supplyController, "onlySupplyController");
_;
}
/**
* @dev Increases the total supply by minting the specified number of tokens to the supply controller account.
* @param _value The number of tokens to add.
* @return A boolean that indicates if the operation was successful.
*/
function increaseSupply(uint256 _value) public onlySupplyController returns (bool success) {
totalSupply_ = totalSupply_.add(_value);
balances[supplyController] = balances[supplyController].add(_value);
emit SupplyIncreased(supplyController, _value);
emit Transfer(address(0), supplyController, _value);
return true;
}
/**
* @dev Decreases the total supply by burning the specified number of tokens from the supply controller account.
* @param _value The number of tokens to remove.
* @return A boolean that indicates if the operation was successful.
*/
function decreaseSupply(uint256 _value) public onlySupplyController returns (bool success) {
require(_value <= balances[supplyController], "not enough supply");
balances[supplyController] = balances[supplyController].sub(_value);
totalSupply_ = totalSupply_.sub(_value);
emit SupplyDecreased(supplyController, _value);
emit Transfer(supplyController, address(0), _value);
return true;
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment