Last active
March 12, 2024 19:35
-
-
Save kdauria/524eade46135f6348140 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
stat_smooth_func <- function(mapping = NULL, data = NULL, | |
geom = "smooth", position = "identity", | |
..., | |
method = "auto", | |
formula = y ~ x, | |
se = TRUE, | |
n = 80, | |
span = 0.75, | |
fullrange = FALSE, | |
level = 0.95, | |
method.args = list(), | |
na.rm = FALSE, | |
show.legend = NA, | |
inherit.aes = TRUE, | |
xpos = NULL, | |
ypos = NULL) { | |
layer( | |
data = data, | |
mapping = mapping, | |
stat = StatSmoothFunc, | |
geom = geom, | |
position = position, | |
show.legend = show.legend, | |
inherit.aes = inherit.aes, | |
params = list( | |
method = method, | |
formula = formula, | |
se = se, | |
n = n, | |
fullrange = fullrange, | |
level = level, | |
na.rm = na.rm, | |
method.args = method.args, | |
span = span, | |
xpos = xpos, | |
ypos = ypos, | |
... | |
) | |
) | |
} | |
StatSmoothFunc <- ggproto("StatSmooth", Stat, | |
setup_params = function(data, params) { | |
# Figure out what type of smoothing to do: loess for small datasets, | |
# gam with a cubic regression basis for large data | |
# This is based on the size of the _largest_ group. | |
if (identical(params$method, "auto")) { | |
max_group <- max(table(data$group)) | |
if (max_group < 1000) { | |
params$method <- "loess" | |
} else { | |
params$method <- "gam" | |
params$formula <- y ~ s(x, bs = "cs") | |
} | |
} | |
if (identical(params$method, "gam")) { | |
params$method <- mgcv::gam | |
} | |
params | |
}, | |
compute_group = function(data, scales, method = "auto", formula = y~x, | |
se = TRUE, n = 80, span = 0.75, fullrange = FALSE, | |
xseq = NULL, level = 0.95, method.args = list(), | |
na.rm = FALSE, xpos=NULL, ypos=NULL) { | |
if (length(unique(data$x)) < 2) { | |
# Not enough data to perform fit | |
return(data.frame()) | |
} | |
if (is.null(data$weight)) data$weight <- 1 | |
if (is.null(xseq)) { | |
if (is.integer(data$x)) { | |
if (fullrange) { | |
xseq <- scales$x$dimension() | |
} else { | |
xseq <- sort(unique(data$x)) | |
} | |
} else { | |
if (fullrange) { | |
range <- scales$x$dimension() | |
} else { | |
range <- range(data$x, na.rm = TRUE) | |
} | |
xseq <- seq(range[1], range[2], length.out = n) | |
} | |
} | |
# Special case span because it's the most commonly used model argument | |
if (identical(method, "loess")) { | |
method.args$span <- span | |
} | |
if (is.character(method)) method <- match.fun(method) | |
base.args <- list(quote(formula), data = quote(data), weights = quote(weight)) | |
model <- do.call(method, c(base.args, method.args)) | |
m = model | |
eq <- substitute(italic(y) == a + b %.% italic(x)*","~~italic(r)^2~"="~r2, | |
list(a = format(coef(m)[1], digits = 3), | |
b = format(coef(m)[2], digits = 3), | |
r2 = format(summary(m)$r.squared, digits = 3))) | |
func_string = as.character(as.expression(eq)) | |
if(is.null(xpos)) xpos = min(data$x)*0.9 | |
if(is.null(ypos)) ypos = max(data$y)*0.9 | |
data.frame(x=xpos, y=ypos, label=func_string) | |
}, | |
required_aes = c("x", "y") | |
) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi, thank you for creating this. How would you go about changing the size of the equation and r2 value. currently I have a 6x4 facet wrap and the text isn't fully shown.
Thanks