Created
July 13, 2012 13:57
-
-
Save kedarbellare/3105018 to your computer and use it in GitHub Desktop.
Sudoku solver/checker
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def times(A, B): | |
return [(i,j) for i in A for j in B] | |
dims = range(9) | |
subdims = ([0,1,2],[3,4,5],[6,7,8]) | |
squares = times(dims, dims) | |
unitlist = ([times(dims, [c]) for c in dims] + | |
[times([r], dims) for r in dims] + | |
[times(rs, cs) for rs in subdims for cs in subdims]) | |
units = dict((s, [u for u in unitlist if s in u]) | |
for s in squares) | |
peers = dict((s, set(sum(units[s],[]))-set([s])) | |
for s in squares) | |
def copy(board): | |
return map(lambda x: x[:], board) | |
def subgrid(i): | |
return range(i/3*3, i/3*3+3) | |
def check_row(nums): | |
## each number should be between 0 and 9 | |
counts = [0 for i in range(10)] | |
for num in nums: | |
if num < 0 or num > 9: | |
return False | |
counts[num] += 1 | |
if num > 0 and counts[num] > 1: | |
return False | |
return True | |
def get_constraints(grid, i, j): | |
row = grid[i] | |
col = [grid[k][j] for k in dims] | |
cell = [grid[k][l] for k in subgrid(i) for l in subgrid(j)] | |
if check_row(row) and check_row(col) and check_row(cell): | |
if grid[i][j] > 0 and grid[i][j] < 10: | |
return str(grid[i][j]) | |
else: | |
return ''.join(map(lambda x: str(x), set(range(1, 10)) - set(row) - set(col) - set(cell))) | |
def check_sudoku(grid): | |
if type(grid) is not list or len(grid) != 9: return | |
for row in grid: | |
if type(row) is not list or len(row) != 9: return | |
for num in row: | |
if type(num) is not int: return | |
for i in range(9): | |
for j in range(9): | |
if get_constraints(grid, i, j) is None: | |
return False | |
return True | |
def assign(board, i, j, d): | |
if d not in board[i][j]: | |
return False | |
board[i][j] = d | |
updated = [] | |
for (i1,j1) in peers[i,j]: | |
if d in board[i1][j1]: | |
board[i1][j1] = board[i1][j1].replace(d, '') | |
if len(board[i1][j1]) == 0: | |
return False | |
elif len(board[i1][j1]) == 1: | |
updated.append((i1,j1,board[i1][j1])) | |
# propagate | |
for unit in units[i1,j1]: | |
for d2 in '123456789': | |
d2places = [(i2,j2) for (i2,j2) in unit if d2 in board[i2][j2]] | |
if len(d2places) == 0: | |
return False | |
elif len(d2places) == 1: | |
i2,j2 = d2places[0] | |
updated.append((i2,j2,d2)) | |
for i1,j1,d1 in set(updated): | |
if not assign(board, i1, j1, d1): | |
return False | |
return board | |
def assign_from(board): | |
return [map(lambda x: int(x), row) for row in board] | |
def solve_partial(board): | |
if board is False: return False | |
# most constrained | |
cell_lengths = [(len(board[c[0]][c[1]]), c) for c in squares] | |
if all(lc[0] == 1 for lc in cell_lengths): | |
return board | |
least, (i, j) = min([lc for lc in cell_lengths if lc[0] > 1], key=lambda x: x[0]) | |
for d in board[i][j]: | |
newboard = solve_partial(assign(copy(board), i, j, d)) | |
if newboard: return newboard # found partial solution | |
return False | |
def solve_sudoku (grid): | |
###Your code here. | |
grid_check = check_sudoku(grid) | |
if grid_check == None or grid_check == False: return grid_check | |
board = copy(grid) | |
for i in range(9): | |
for j in range(9): board[i][j] = get_constraints(grid, i, j) | |
soln = solve_partial(board) | |
if soln: | |
grid = assign_from(soln) | |
assert check_sudoku(grid) == True | |
assert sum(map(sum, grid)) == 405 | |
return grid | |
else: | |
return False |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment