Last active
November 9, 2015 08:53
-
-
Save keiya/ac0c9e0fc01fd819d0a8 to your computer and use it in GitHub Desktop.
ワークロード特性評価/クラスタリング:ミニマム・スパニング・ツリー (Minimum spanning tree; MST clustering for workload benchmarking)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import math | |
| src_data = ((14,2735,"TKB"), | |
| (13,253,"MAC"), | |
| (8,27,"COBOL"), | |
| (6,27,"BASIC"), | |
| (6,12,"Pascal"), | |
| (4,91,"EDT"), | |
| (1,33,"SOS")) | |
| test_data = ((2,4,"A"), | |
| (3,5,"B"), | |
| (1,6,"C"), | |
| (4,3,"D"), | |
| (5,2,"E")) | |
| def dist_matrix(data): | |
| n = len(data) | |
| dist = [[float("inf") for x in range(n)] for x in range(n)] | |
| for i,d in enumerate(data): | |
| for j in range(i+1,n): | |
| xdis = data[i][0] - data[j][0] | |
| ydis = data[i][1] - data[j][1] | |
| #dist[i][j] = (i,j,math.sqrt(xdis*xdis + ydis*ydis),xdis/2,ydis/2,data[i],data[j]) | |
| dist[i][j] = math.sqrt(xdis*xdis + ydis*ydis) | |
| print_matrix(dist) | |
| return dist | |
| def print_matrix(data): | |
| for i,a in enumerate(data): | |
| for j,b in enumerate(data[i]): | |
| print("{0} ".format(b),end='') | |
| print("") | |
| def find_cluster2(data): | |
| dist = dist_matrix(data) | |
| n = len(dist) | |
| min_dist = float('inf') | |
| min_pair = None | |
| # find minimum pair | |
| for i in range(0,n): | |
| for j in range(0,n): | |
| if dist[i][j] < min_dist: | |
| min_dist = dist[i][j] | |
| min_pair = (i,j) | |
| print(min_pair) | |
| clustered = [] | |
| for i,d in enumerate(data): | |
| if i == min_pair[0] or i == min_pair[1]: | |
| continue | |
| clustered.append(d) | |
| clustered.append(( | |
| (data[min_pair[0]][0] + data[min_pair[1]][0]) / 2, | |
| (data[min_pair[0]][1] + data[min_pair[1]][1]) / 2, | |
| data[min_pair[0]],data[min_pair[1]],)) | |
| print_matrix(clustered) | |
| return clustered | |
| def gen_mst(clustered): | |
| while True: | |
| clustered = find_cluster2(clustered) | |
| print("") | |
| if len(clustered) <= 2: | |
| break | |
| gen_mst(test_data) | |
| print("") | |
| gen_mst(src_data) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment