Created
September 13, 2013 05:58
-
-
Save kemaleren/6547145 to your computer and use it in GitHub Desktop.
An implementation of the BiMax biclustering algorithm by Prelic, et. al. (2006).
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Implements the BiMax biclustering algorithm. | |
Authors : Kemal Eren | |
License: BSD 3 clause | |
""" | |
import numpy as np | |
class BiMax(): | |
"""Method to find all maximal biclusters in a boolean array. | |
Attributes | |
---------- | |
`rows_` : array-like, shape (n_row_clusters, n_rows) | |
Results of the clustering. `rows[i, r]` is True if cluster `i` | |
contains row `r`. Available only after calling ``fit``. | |
`columns_` : array-like, shape (n_column_clusters, n_columns) | |
Results of the clustering, like `rows`. | |
""" | |
def fit(self, X): | |
"""Creates a biclustering for X. | |
Parameters | |
---------- | |
X : array-like, shape (n_samples, n_features) | |
""" | |
n_rows, n_cols = X.shape | |
result = self._conquer(X, set(range(n_rows)), | |
set(range(n_cols)), []) | |
row_ind = [] | |
col_ind = [] | |
for rows, cols in result: | |
ri, ci = self._get_indicators(rows, cols, X.shape) | |
row_ind.append(ri) | |
col_ind.append(ci) | |
self.rows_ = np.vstack(row_ind) | |
self.columns_ = np.vstack(col_ind) | |
def _conquer(self, data, rows, cols, col_sets): | |
if np.all(data[np.array(list(rows))[:, np.newaxis], list(cols)]): | |
return [(rows, cols)] | |
rows_all, rows_none, rows_some, cols_all, cols_none = \ | |
self._divide(data, rows, cols, col_sets) | |
results_all = [] | |
results_none = [] | |
if rows_all: | |
results_all = self._conquer(data, rows_all.union(rows_some), | |
cols_all, col_sets) | |
if rows_none and not rows_some: | |
results_none = self._conquer(data, rows_none, cols_none, col_sets) | |
elif rows_some: | |
new_col_sets = col_sets[:] | |
new_col_sets.append(cols_none) | |
results_none = self._conquer(data, | |
rows_some.union(rows_none), | |
cols_all.union(cols_none), | |
new_col_sets) | |
return results_all + results_none | |
def _divide(self, data, rows, cols, col_sets): | |
new_rows, nz_cols = self._reduce(data, rows, cols, col_sets) | |
n_cols = len(cols) | |
cols_all = cols | |
for r in new_rows: | |
if 0 < len(nz_cols[r]) < n_cols: | |
cols_all = nz_cols[r] | |
break | |
cols_none = cols.difference(cols_all) | |
rows_all = set() | |
rows_none = set() | |
rows_some = set() | |
for r in new_rows: | |
if nz_cols[r].issubset(cols_all): | |
rows_all.add(r) | |
elif nz_cols[r].issubset(cols_none): | |
rows_none.add(r) | |
else: | |
rows_some.add(r) | |
return rows_all, rows_none, rows_some, cols_all, cols_none | |
def _reduce(self, data, rows, cols, col_sets): | |
row_idxs = np.array(list(rows)) | |
col_idxs = np.array(list(cols)) | |
subarray = data[row_idxs[:, np.newaxis], col_idxs] | |
nz_cols = {row_idxs[r]: set(col_idxs[np.nonzero(subarray[r])[0]]) | |
for r in range(row_idxs.shape[0])} | |
new_rows = set(r for r in row_idxs | |
if nz_cols[r] and | |
all(nz_cols[r].intersection(cset) | |
for cset in col_sets)) | |
return new_rows, nz_cols | |
def _get_indicators(self, rows, columns, shape): | |
"""Convert indices to indicator vectors""" | |
row_ind = np.zeros(shape[0], dtype=np.bool) | |
col_ind = np.zeros(shape[1], dtype=np.bool) | |
row_ind[list(rows)] = True | |
col_ind[list(columns)] = True | |
return row_ind, col_ind |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment