Skip to content

Instantly share code, notes, and snippets.

@kendricktan
Last active August 17, 2021 17:12
Show Gist options
  • Save kendricktan/9a776ec6322abaaf03cc9befd35508d4 to your computer and use it in GitHub Desktop.
Save kendricktan/9a776ec6322abaaf03cc9befd35508d4 to your computer and use it in GitHub Desktop.
Clean Code for Capsule Networks
"""
Dynamic Routing Between Capsules
https://arxiv.org/abs/1710.09829
"""
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as transforms
import numpy as np
from torch.autograd import Variable
from torchvision.datasets.mnist import MNIST
from tqdm import tqdm
def index_to_one_hot(index_tensor, num_classes=10):
"""
Converts index value to one hot vector.
e.g. [2, 5] (with 10 classes) becomes:
[
[0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0]
]
"""
index_tensor = index_tensor.long()
return torch.eye(num_classes).index_select(dim=0, index=index_tensor)
def squash_vector(tensor, dim=-1):
"""
Non-linear 'squashing' to ensure short vectors get shrunk
to almost zero length and long vectors get shrunk to a
length slightly below 1.
"""
squared_norm = (tensor**2).sum(dim=dim, keepdim=True)
scale = squared_norm / (1 + squared_norm)
return scale * tensor / torch.sqrt(squared_norm)
def softmax(input, dim=1):
"""
Apply softmax to specific dimensions. Not released on PyTorch stable yet
as of November 6th 2017
https://github.com/pytorch/pytorch/issues/3235
"""
transposed_input = input.transpose(dim, len(input.size()) - 1)
softmaxed_output = F.softmax(
transposed_input.contiguous().view(-1, transposed_input.size(-1)))
return softmaxed_output.view(*transposed_input.size()).transpose(dim, len(input.size()) - 1)
class CapsuleLayer(nn.Module):
def __init__(self, num_capsules, num_routes, in_channels, out_channels,
kernel_size=None, stride=None, num_iterations=3):
super().__init__()
self.num_routes = num_routes
self.num_iterations = num_iterations
self.num_capsules = num_capsules
if num_routes != -1:
self.route_weights = nn.Parameter(
torch.randn(num_capsules, num_routes,
in_channels, out_channels)
)
else:
self.capsules = nn.ModuleList(
[nn.Conv2d(in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=0)
for _ in range(num_capsules)
]
)
def forward(self, x):
# If routing is defined
if self.num_routes != -1:
priors = x[None, :, :, None, :] @ self.route_weights[:, None, :, :, :]
logits = Variable(torch.zeros(priors.size())).cuda()
# Routing algorithm
for i in range(self.num_iterations):
probs = softmax(logits, dim=2)
outputs = squash_vector(
probs * priors).sum(dim=2, keepdim=True)
if i != self.num_iterations - 1:
delta_logits = (priors * outputs).sum(dim=-1, keepdim=True)
logits = logits + delta_logits
else:
outputs = [capsule(x).view(x.size(0), -1, 1)
for capsule in self.capsules]
outputs = torch.cat(outputs, dim=-1)
outputs = squash_vector(outputs)
return outputs
class MarginLoss(nn.Module):
def __init__(self):
super().__init__()
# Reconstruction as regularization
self.reconstruction_loss = nn.MSELoss(size_average=False)
def forward(self, images, labels, classes, reconstructions):
left = F.relu(0.9 - classes, inplace=True) ** 2
right = F.relu(classes - 0.1, inplace=True) ** 2
margin_loss = labels * left + 0.5 * (1. - labels) * right
margin_loss = margin_loss.sum()
reconstruction_loss = self.reconstruction_loss(reconstructions, images)
return (margin_loss + 0.0005 * reconstruction_loss) / images.size(0)
class CapsuleNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(
in_channels=1, out_channels=256, kernel_size=9, stride=1)
self.primary_capsules = CapsuleLayer(
8, -1, 256, 32, kernel_size=9, stride=2)
# 10 is the number of classes
self.digit_capsules = CapsuleLayer(10, 32 * 6 * 6, 8, 16)
self.decoder = nn.Sequential(
nn.Linear(16 * 10, 512),
nn.ReLU(inplace=True),
nn.Linear(512, 1024),
nn.ReLU(inplace=True),
nn.Linear(1024, 784),
nn.Sigmoid()
)
def forward(self, x, y=None):
x = F.relu(self.conv1(x), inplace=True)
x = self.primary_capsules(x)
x = self.digit_capsules(x).squeeze().transpose(0, 1)
classes = (x ** 2).sum(dim=-1) ** 0.5
classes = F.softmax(classes)
if y is None:
# In all batches, get the most active capsule
_, max_length_indices = classes.max(dim=1)
y = Variable(torch.eye(10)).cuda().index_select(
dim=0, index=max_length_indices.data)
reconstructions = self.decoder((x * y[:, :, None]).view(x.size(0), -1))
return classes, reconstructions
if __name__ == '__main__':
# Globals
CUDA = True
EPOCH = 10
# Model
model = CapsuleNet()
if CUDA:
model.cuda()
optimizer = optim.Adam(model.parameters())
margin_loss = MarginLoss()
train_loader = torch.utils.data.DataLoader(
MNIST(root='/tmp', download=True, train=True,
transform=transforms.ToTensor()),
batch_size=8, shuffle=True)
test_loader = torch.utils.data.DataLoader(
MNIST(root='/tmp', download=True, train=False,
transform=transforms.ToTensor()),
batch_size=8, shuffle=True)
for e in range(10):
# Training
train_loss = 0
model.train()
for idx, (img, target) in enumerate(tqdm(train_loader, desc='Training')):
img = Variable(img)
target = Variable(index_to_one_hot(target))
if CUDA:
img = img.cuda()
target = target.cuda()
optimizer.zero_grad()
classes, reconstructions = model(img, target)
loss = margin_loss(img, target, classes, reconstructions)
loss.backward()
train_loss += loss.data.cpu()[0]
optimizer.step()
print('Training:, Avg Loss: {:.4f}'.format(train_loss))
# # Testing
correct = 0
test_loss = 0
model.eval()
for idx, (img, target) in enumerate(tqdm(test_loader, desc='test set')):
img = Variable(img)
target_index = target
target = Variable(index_to_one_hot(target))
if CUDA:
img = img.cuda()
target = target.cuda()
classes, reconstructions = model(img, target)
test_loss += margin_loss(img, target, classes, reconstructions).data.cpu()
# Get index of the max log-probability
pred = classes.data.max(1, keepdim=True)[1].cpu()
correct += pred.eq(target_index.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
correct = 100. * correct / len(test_loader.dataset)
print('Test Set: Avg Loss: {:.4f}, Accuracy: {:.4f}'.format(
test_loss[0], correct))
@Atcold
Copy link

Atcold commented Nov 17, 2017

@balassbals, you are correct. Today I gave a speech at NYU, about this paper, and people pointed out that the softmax is done across the fist dimension (i.e. dimension number 0). I missed this the first time I read the paper. My bad. So you are correct, there is a mistake in this implementation.
@kendricktan did you follow the conversation? If so, please fix.

@balassbals
Copy link

@Atcold, But when I do across dim 0(10 classes), I dont get the expected results. Another implementation I saw in Pytorch uses F.softmax wrongly. Actually I implemented it myself first but I'm not getting the results. So I'm looking for some working version in Pytorch.

@Atcold
Copy link

Atcold commented Nov 20, 2017

Also, why is there a softmax() at line L152? This should simply be the capsule's norm! Correct?

@pqn
Copy link

pqn commented May 12, 2018

@balassbals I have not found any working PyTorch implementations that softmax across the 10 classes (only across the 1152 routes, which does not match the paper). Have you discovered anything since?

@afmsaif
Copy link

afmsaif commented Jun 13, 2018

hello,
i have some experience about capnet written in tensorflow but i have no idea about pytorch. can you help me?
i want to input data which has size of (224,224,3) and target will be binary 0 or 1 so for this kind of data what kind of modification i have to make?
thanks in advance.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment