Created
June 22, 2018 05:10
-
-
Save kengz/20d43856877462cae13d041fd6f7f7fa to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def train_shared(self): | |
''' | |
Trains the network when the actor and critic share parameters | |
''' | |
if self.to_train == 1: | |
# onpolicy a2c update | |
a2c_loss = super(SIL, self).train_shared() | |
# offpolicy sil update with random minibatch | |
total_sil_loss = torch.tensor(0.0) | |
for _ in range(self.training_epoch): | |
batch = self.replay_sample() | |
sil_policy_loss, sil_val_loss = self.calc_sil_policy_val_loss(batch) | |
sil_loss = self.policy_loss_coef * sil_policy_loss + self.val_loss_coef * sil_val_loss | |
self.net.training_step(loss=sil_loss) | |
total_sil_loss += sil_loss | |
sil_loss = total_sil_loss / self.training_epoch | |
loss = a2c_loss + sil_loss | |
self.last_loss = loss.item() | |
return self.last_loss | |
def train_separate(self): | |
''' | |
Trains the network when the actor and critic are separate networks | |
''' | |
if self.to_train == 1: | |
# onpolicy a2c update | |
a2c_loss = super(SIL, self).train_separate() | |
# offpolicy sil update with random minibatch | |
total_sil_loss = torch.tensor(0.0) | |
for _ in range(self.training_epoch): | |
batch = self.replay_sample() | |
sil_policy_loss, sil_val_loss = self.calc_sil_policy_val_loss(batch) | |
sil_policy_loss = self.policy_loss_coef * sil_policy_loss | |
sil_val_loss = self.val_loss_coef * sil_val_loss | |
self.net.training_step(loss=sil_policy_loss, retain_graph=True) | |
self.critic.training_step(loss=sil_val_loss) | |
total_sil_loss += sil_policy_loss + sil_val_loss | |
sil_loss = total_sil_loss / self.training_epoch | |
loss = a2c_loss + sil_loss | |
self.last_loss = loss.item() | |
return self.last_loss |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment