Last active
August 11, 2019 18:15
-
-
Save kengz/7ed22834b68a238b73f1f2de9ed1f70e to your computer and use it in GitHub Desktop.
SAC networks
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def init_nets(self, global_nets=None): | |
''' | |
Networks: net(actor/policy), q1_net, target_q1_net, q2_net, target_q2_net | |
All networks are separate, and have the same hidden layer architectures and optim specs, so tuning is minimal | |
''' | |
self.shared = False # SAC does not share networks | |
NetClass = getattr(net, self.net_spec['type']) | |
# main actor network | |
self.net = NetClass(self.net_spec, self.body.state_dim, net_util.get_out_dim(self.body)) | |
self.net_names = ['net'] | |
# two critic Q-networks to mitigate positive bias in q_loss and speed up training, uses q_net.py with prefix Q | |
QNetClass = getattr(net, 'Q' + self.net_spec['type']) | |
q_in_dim = [self.body.state_dim, self.body.action_dim] | |
self.q1_net = QNetClass(self.net_spec, q_in_dim, 1) | |
self.target_q1_net = QNetClass(self.net_spec, q_in_dim, 1) | |
self.q2_net = QNetClass(self.net_spec, q_in_dim, 1) | |
self.target_q2_net = QNetClass(self.net_spec, q_in_dim, 1) | |
self.net_names += ['q1_net', 'target_q1_net', 'q2_net', 'target_q2_net'] | |
net_util.copy(self.q1_net, self.target_q1_net) | |
net_util.copy(self.q2_net, self.target_q2_net) | |
# temperature variable to be learned, and its target entropy | |
self.log_alpha = torch.zeros(1, requires_grad=True, device=self.net.device) | |
self.alpha = self.log_alpha.detach().exp() | |
self.target_entropy = - np.product(self.body.action_space.shape) | |
# init net optimizer and its lr scheduler | |
self.optim = net_util.get_optim(self.net, self.net.optim_spec) | |
self.lr_scheduler = net_util.get_lr_scheduler(self.optim, self.net.lr_scheduler_spec) | |
self.q1_optim = net_util.get_optim(self.q1_net, self.q1_net.optim_spec) | |
self.q1_lr_scheduler = net_util.get_lr_scheduler(self.q1_optim, self.q1_net.lr_scheduler_spec) | |
self.q2_optim = net_util.get_optim(self.q2_net, self.q2_net.optim_spec) | |
self.q2_lr_scheduler = net_util.get_lr_scheduler(self.q2_optim, self.q2_net.lr_scheduler_spec) | |
self.alpha_optim = net_util.get_optim(self.log_alpha, self.net.optim_spec) | |
self.alpha_lr_scheduler = net_util.get_lr_scheduler(self.alpha_optim, self.net.lr_scheduler_spec) | |
net_util.set_global_nets(self, global_nets) | |
self.post_init_nets() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment