Created
April 10, 2010 10:20
-
-
Save kennytm/361955 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
ising.cpp ... Ising Model | |
Copyright (C) 2010 KennyTM~ <[email protected]> | |
This program is free software: you can redistribute it and/or modify | |
it under the terms of the GNU General Public License as published by | |
the Free Software Foundation, either version 3 of the License, or | |
(at your option) any later version. | |
This program is distributed in the hope that it will be useful, | |
but WITHOUT ANY WARRANTY; without even the implied warranty of | |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
GNU General Public License for more details. | |
You should have received a copy of the GNU General Public License | |
along with this program. If not, see <http://www.gnu.org/licenses/>. | |
*/ | |
/* | |
Please compile with | |
g++-mp-4.5 -O3 -march=native -Wall -std=c++0x -I/opt/local/include -lgsl -fno-unswitch-loops -fno-tree-vectorize -funsafe-loop-optimizations -fno-math-errno ising.cpp | |
To sample, please use | |
shark -1 -i ./a.out | |
*/ | |
#include <vector> | |
#include <utility> | |
#include <gsl/gsl_rng.h> | |
#include <cassert> | |
#include <cstdio> | |
#include <cstdint> | |
#include <algorithm> | |
#include <ctime> | |
#include <iterator> | |
#include <cmath> | |
#include <numeric> | |
using namespace std; | |
static gsl_rng* rng; | |
typedef int64_t Energy; | |
typedef int Node; | |
typedef int64_t EnergySquared; | |
typedef double Beta; // Beta -> inverse temperature | |
enum Spin : char { | |
spinUp = 1, | |
spinDown = -1 | |
}; | |
typedef int TotalSpin; | |
struct Neighbor { | |
Node node; | |
Energy energy; | |
}; | |
struct Edge { | |
Node source, target; | |
Energy energy; | |
}; | |
struct Ising; | |
struct ExpCache { | |
Energy e; | |
unsigned long expval; | |
}; | |
static vector<ExpCache> cache; | |
__attribute__((hot)) | |
bool cmp_memoized_exp(Beta beta, Energy x) { | |
unsigned long res; | |
for (auto cit = cache.cbegin(); cit != cache.cend(); ++ cit) | |
if (cit->e == x) { | |
res = cit->expval; | |
goto cmp; | |
} | |
res = (unsigned long)(exp(-beta * x) * 0x100000000L); | |
cache.push_back(ExpCache{x, res}); | |
cmp: | |
return gsl_rng_get(rng) < res; | |
} | |
void flush_memoized_exp() { | |
cache.clear(); | |
} | |
struct Graph { | |
// Construct a graph of given size and edges. | |
Graph(const int size, const vector<Edge>& edges) : adjs(size) { | |
for (auto ait = adjs.begin(); ait != adjs.end(); ++ ait) | |
ait->reserve(4); | |
for (auto cit = edges.cbegin(); cit != edges.cend(); ++ cit) { | |
adjs[cit->source].push_back(Neighbor{cit->target, cit->energy}); | |
adjs[cit->target].push_back(Neighbor{cit->source, cit->energy}); | |
} | |
} | |
// Return a square lattice. | |
static Graph square_lattice (const int width, const int height) { | |
vector<Edge> edges; | |
edges.reserve(2*width*height); | |
Node i = 0; | |
for (int y = 0; y < height; ++ y) { | |
for (int x = 0; x < width; ++ x, ++ i) { | |
Node right = (x == width-1) ? i-width+1 : i+1; | |
Node down = (y == height-1) ? x : i+width; | |
edges.push_back(Edge{i, right, 1}); | |
edges.push_back(Edge{i, down, 1}); | |
} | |
} | |
return Graph(width*height, edges); | |
} | |
// Return a hexagonal lattice with impurity. | |
// - impurity_level must be between 0 and 2^32-1. | |
// - width & height must be even numbers. | |
static Graph hexagonal_lattice (const int width, const int height, const unsigned long impurity_level, const Energy pure_energy, const Energy impure_energy) { | |
assert(width % 2 == 0); | |
assert(height % 2 == 0); | |
vector<Edge> edges; | |
edges.reserve(3*width*height/2); | |
Node i = 0; | |
for (int y = 0; y < height; ++ y) { | |
for (int x = 0; x < width; ++ x, ++ i) { | |
Node right = (x == width-1) ? i-width+1 : i+1; | |
edges.push_back(Edge{i, right, gsl_rng_get(rng) < impurity_level ? impure_energy : pure_energy}); | |
if ((x + y) % 2 == 0) { | |
Node down = (y == height-1) ? x : i+width; | |
edges.push_back(Edge{i, down, gsl_rng_get(rng) < impurity_level ? impure_energy : pure_energy}); | |
} | |
} | |
} | |
return Graph(width*height, edges); | |
} | |
int size() const { return adjs.size(); } | |
private: | |
vector<vector<Neighbor>> adjs; | |
public: | |
void debug() const { | |
Node i = 0; | |
for (auto ait = adjs.cbegin(); ait != adjs.cend(); ++ ait) { | |
printf("%d: ", i++); | |
for (auto eit = ait->cbegin(); eit != ait->cend(); ++ eit) { | |
printf("(%d, %lld), ", eit->node, eit->energy); | |
} | |
printf("\n"); | |
} | |
} | |
friend struct Ising; | |
// friend int main(); | |
}; | |
struct Ising { | |
Ising(const Graph& g) : graph(g), spins(g.size(), spinUp) {} | |
int size() const { return spins.size(); } | |
Energy energy() const { | |
Energy total_energy = 0; | |
Node i = 0; | |
auto sit = spins.cbegin(); | |
auto ait = graph.adjs.cbegin(); | |
for (; ait != graph.adjs.cend(); ++ ait, ++ sit, ++ i) { | |
Spin spin = *sit; | |
for (auto eit = ait->cbegin(); eit != ait->cend(); ++ eit) { | |
if (spin == spins[eit->node]) | |
total_energy -= eit->energy; | |
else | |
total_energy += eit->energy; | |
} | |
} | |
return total_energy / 2; | |
} | |
TotalSpin total_spin() const { | |
TotalSpin total_spin_1 = 0; | |
for (auto sit = spins.cbegin(); sit != spins.cend(); ++ sit) | |
total_spin_1 += *sit; | |
return total_spin_1; | |
} | |
Energy energy_change_by_flipping(const Node node) const { | |
Spin spin = spins[node]; | |
const vector<Neighbor>& adj = graph.adjs[node]; | |
Energy total_energy_change = 0; | |
for (auto eit = adj.cbegin(); eit != adj.cend(); ++ eit) { | |
if (spin == spins[eit->node]) | |
total_energy_change += eit->energy; | |
else | |
total_energy_change -= eit->energy; | |
} | |
return total_energy_change * 2; | |
} | |
void flip(const Node node) { | |
spins[node] = spins[node] == spinUp ? spinDown : spinUp; | |
} | |
__attribute__((hot)) | |
void monte_carlo_step(const Beta beta, Energy* delta_energy, TotalSpin* delta_total_spin) { | |
Node node = gsl_rng_get(rng) % size(); // warning! requires size() is a power of 2. | |
Energy dE = energy_change_by_flipping(node); | |
if (dE < 0 || cmp_memoized_exp(beta, dE)) { | |
flip(node); | |
if (delta_energy) | |
*delta_energy = dE; | |
if (delta_total_spin) | |
*delta_total_spin = spins[node]*2; | |
} else { | |
if (delta_energy) | |
*delta_energy = 0; | |
if (delta_total_spin) | |
*delta_total_spin = 0; | |
} | |
} | |
void run_monte_carlo(const Beta beta, int stats_steps, Energy* energy_history, TotalSpin* spin_history) { | |
int steps = 20000 * size(); | |
// dry run for 20000N - 180000 steps. | |
for (int i = stats_steps; i < steps; ++ i) | |
monte_carlo_step(beta, NULL, NULL); | |
// collect stats for the last 180000 steps; | |
Energy cur_energy = energy(); | |
TotalSpin cur_spin = total_spin(); | |
for (int i = 0; i < stats_steps; ++ i) { | |
Energy dE; | |
TotalSpin dM; | |
monte_carlo_step(beta, &dE, &dM); | |
cur_energy += dE; | |
cur_spin += dM; | |
energy_history[i] = cur_energy; | |
spin_history[i] = abs(cur_spin); | |
} | |
} | |
void reset_spins() { fill(spins.begin(), spins.end(), spinUp); } | |
private: | |
Graph graph; | |
vector<Spin> spins; | |
}; | |
template <typename T> | |
T sqsum(const T res, const T val) { return res + val * val; } | |
template <typename Iter> | |
double mean(const Iter beg, const Iter end) { | |
auto sum = accumulate(beg, end, 0); | |
auto size = distance(beg, end); | |
return (double)sum / size; | |
} | |
template <typename Iter> | |
pair<double, double> stats(const Iter beg, const Iter end) { | |
typedef typename iterator_traits<Iter>::value_type T; | |
T sum = accumulate(beg, end, (T)0); | |
T sq_sum = accumulate(beg, end, (T)0, sqsum<T>); | |
auto size = distance(beg, end); | |
double xmean = (double)sum / size; | |
double var = (double)(size * sq_sum - sum * sum) / (size * (size-1)); | |
return make_pair(xmean, var); | |
} | |
int main (int argc, char* argv[]) { | |
rng = gsl_rng_alloc(gsl_rng_taus2); | |
gsl_rng_set(rng, time(NULL)); | |
auto level = atol(argv[1]) * (0x100000000L / 10); | |
Graph g = Graph::hexagonal_lattice(8, 16, level, 1, -1000); | |
#if 1 | |
static const long stats_steps = 180000; | |
auto energy_history = new Energy[stats_steps]; | |
auto spin_history = new TotalSpin[stats_steps]; | |
static const long rep_steps = 48; | |
auto heat_caps = new double[rep_steps]; | |
auto mags = new double[rep_steps]; | |
printf("T\tCv\tdCv\tM\tdM\n"); | |
for (int T = 1; T <= 100; ++ T) { | |
double beta = 20.0 / T; | |
int j; | |
for (j = 0; j < rep_steps; ++ j) { | |
Graph g = Graph::hexagonal_lattice(8, 16, level, -1, 1000); | |
// Graph g = Graph::square_lattice(5,5); | |
Ising ising (g); | |
ising.run_monte_carlo(beta, stats_steps, energy_history, spin_history); | |
auto energy_p = stats(energy_history, energy_history+stats_steps); | |
double heat_capacity = energy_p.second * beta * beta / ising.size(); | |
double magnetization = mean(spin_history, spin_history+stats_steps) / ising.size(); | |
heat_caps[j] = heat_capacity; | |
mags[j] = magnetization; | |
// if (j == 2 && heat_caps[j] == 0) { | |
// j ++; | |
// break; | |
// } | |
} | |
// auto heat_cap_p = stats(heat_caps, heat_caps+j); | |
// auto mags_p = stats(mags, mags+j); | |
for (--j; j > 0; --j) | |
printf("%g\t%g\t%g\n", 1/beta, heat_caps[j], mags[j]); | |
// printf("%g\t%g\t%g\t%g\t%g\n", 1/beta, heat_cap_p.first, sqrt(heat_cap_p.second/j), mags_p.first, sqrt(mags_p.second/j)); | |
flush_memoized_exp(); | |
} | |
delete[] spin_history; | |
delete[] energy_history; | |
delete[] heat_caps; | |
delete[] mags; | |
#endif | |
gsl_rng_free(rng); | |
return 0; | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment