Created
May 28, 2010 08:47
-
-
Save kennytm/416920 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3.1 | |
# | |
# multicoin.py ... Quantum walk with multiple biased coins | |
# | |
# Copyright (C) 2010 KennyTM~ | |
# | |
# This program is free software: you can redistribute it and/or modify | |
# it under the terms of the GNU General Public License as published by | |
# the Free Software Foundation, either version 3 of the License, or | |
# (at your option) any later version. | |
# | |
# This program is distributed in the hope that it will be useful, | |
# but WITHOUT ANY WARRANTY; without even the implied warranty of | |
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
# GNU General Public License for more details. | |
# | |
# You should have received a copy of the GNU General Public License | |
# along with this program. If not, see <http://www.gnu.org/licenses/>. | |
# | |
import random | |
from math import * | |
from itertools import chain | |
# Compute theta from s(M-1) .. s1 | |
def findThetaUnbiased(history): | |
return pi/4 | |
def findThetaBiased(history): | |
if history == (-1, -1): | |
return 42 * pi/180 | |
else: | |
return pi/4 | |
findTheta = findThetaBiased | |
# Compute the probabilities of flip. | |
def C(coins, position, amplitude): | |
global findTheta | |
history = coins[:-1] | |
theta = findTheta(history) | |
s0_up = cos(theta) * amplitude | |
s0_down = sin(theta) * 1j * amplitude | |
if coins[-1] == -1: # spin-down, flip s0_0 and s0_1 | |
(s0_up, s0_down) = (s0_down, s0_up) | |
return [((history + (1,), position), s0_up), ((history + (-1,), position), s0_down)] | |
# Perform translation | |
def S(coins, position, amplitude): | |
coin = coins[-1] | |
position += coin | |
return [((coins, position), amplitude)] | |
# Record history | |
def R(coins, position, amplitude): | |
newCoins = coins[1:] + (coins[0],) | |
return [((newCoins, position), amplitude)] | |
# accumulate | |
def accumBy(lst): | |
d = {} | |
for k, v in lst: | |
if k in d: | |
d[k].append(v) | |
else: | |
d[k] = [v] | |
return {k: fsum(v) for k, v in d.items()} | |
def accumByComplex(lst): | |
(re_part, im_part) = zip( *( ((k, v.real), (k, v.imag)) for k, v in lst) ) | |
dr = accumBy(re_part) | |
di = accumBy(im_part) | |
for k, v in di.items(): | |
dr[k] += v * 1j | |
return dr | |
# Apply an operator to a superposition of states | |
def evolveWith(states, operator): | |
newStateList = chain(*(operator(coins, position, amplitude) for ((coins, position), amplitude) in states.items())) | |
return accumByComplex(newStateList) | |
# Evolution operator | |
def U(states): | |
return evolveWith(evolveWith(evolveWith(states, C), S), R) | |
# Find position distribution. | |
def posDistr(states): | |
return accumBy((k, v.real*v.real + v.imag*v.imag) for (_, k), v in states.items()) | |
def meanX(xdistr): | |
s = fsum(p*q for p, q in xdistr.items()) | |
n = fsum(xdistr.values()) | |
return s/n | |
# actual evolution. | |
states = {((1,1,1),0): 1.0, ((-1,-1,-1),0): -1.0} | |
for i in range(250): | |
findTheta = [findThetaUnbiased, findThetaUnbiased, findThetaBiased][i % 3] # AAB | |
states = U(states) | |
print (i, "\t", meanX(posDistr(states))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment