Last active
December 15, 2018 06:34
-
-
Save kentatogashi/67369c8208a3e2e53a6a3e4f5c42404d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import matplotlib.pyplot as plt | |
df_orig = pd.read_csv('https://timeseries.weebly.com/uploads/2/1/0/8/21086414/_visitors.csv') | |
df = df_orig.copy() | |
df['Date'].replace('(.*)Q1', r'\1-01', regex=True, inplace=True) | |
df['Date'].replace('(.*)Q2', r'\1-04', regex=True, inplace=True) | |
df['Date'].replace('(.*)Q3', r'\1-07', regex=True, inplace=True) | |
df['Date'].replace('(.*)Q4', r'\1-10', regex=True, inplace=True) | |
df['DateTime'] = pd.to_datetime(df['Date']) | |
df.drop('Date', axis=1, inplace=True) | |
plt.plot(df['DateTime'], df['Australia'], label='Australia') | |
plt.plot(df['DateTime'], df['China, People\'s Republic of'], label='China, People\'s Republic of') | |
plt.plot(df['DateTime'], df['Japan'], label='Japan') | |
plt.plot(df['DateTime'], df['United Kingdom'], label='Unite Kingdom') | |
plt.title('Visitors to NZ') | |
plt.xlabel('datetime') | |
plt.ylabel('visitors') | |
plt.legend(loc='best') | |
plt.show() | |
df_orig = pd.read_csv('https://timeseries.weebly.com/uploads/2/1/0/8/21086414/_visitors.csv') | |
df = df_orig.copy() | |
df['Date'].replace('(.*)Q1', r'\1-01', regex=True, inplace=True) | |
df['Date'].replace('(.*)Q2', r'\1-04', regex=True, inplace=True) | |
df['Date'].replace('(.*)Q3', r'\1-07', regex=True, inplace=True) | |
df['Date'].replace('(.*)Q4', r'\1-10', regex=True, inplace=True) | |
df['DateTime'] = pd.to_datetime(df['Date']) | |
df.drop('Date', axis=1, inplace=True) | |
plt.plot(df['DateTime'], df['Australia'], label='Australia') | |
plt.plot(df['DateTime'], df['China, People\'s Republic of'], label='China, People\'s Republic of') | |
plt.plot(df['DateTime'], df['Japan'], label='Japan') | |
plt.plot(df['DateTime'], df['United Kingdom'], label='Unite Kingdom') | |
plt.title('Visitors to NZ') | |
plt.xlabel('datetime') | |
plt.ylabel('visitors') | |
plt.legend(loc='best') | |
plt.show() | |
# linear_model | |
from sklearn.linear_model import LinearRegression | |
from sklearn.metrics import mean_squared_error | |
import math | |
size = len(df) | |
test_size = 20 | |
train_data = df.Australia[:(size - test_size)] | |
test_data = df.Australia[-(test_size):] | |
trainX = train_data.index.values.reshape(-1, 1) | |
trainY = train_data.values.reshape(-1, 1) | |
testX = test_data.index.values.reshape(-1, 1) | |
testY = test_data.values.reshape(-1, 1) | |
lr = LinearRegression() | |
lr.fit(trainX, trainY) | |
predicted_trainY = lr.predict(trainX) | |
import math | |
print(f'RMSE: %.2f' % math.sqrt(mean_squared_error(trainY, predicted_trainY))) | |
plt.plot(trainX, trainY, label='actual') | |
plt.plot(trainX, predicted_trainY, label='predicted') | |
plt.legend(loc='best') | |
plt.show() | |
print(f'RMSE: %.2f' % math.sqrt(mean_squared_error(testY, predicted_testY))) | |
plt.plot(testX, testY, label='actual') | |
plt.plot(testX, predicted_testY, label='predicted') | |
plt.legend(loc='best') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment