-
-
Save kentkost/f2699eb1dd41e2eb6203f0d0c77a987e to your computer and use it in GitHub Desktop.
Postman Test Runner BigInt fix
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
var BigNumber, | |
isNumeric = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i, | |
mathceil = Math.ceil, | |
mathfloor = Math.floor, | |
notBool = ' not a boolean or binary digit', | |
roundingMode = 'rounding mode', | |
tooManyDigits = 'number type has more than 15 significant digits', | |
ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_', | |
BASE = 1e14, | |
LOG_BASE = 14, | |
MAX_SAFE_INTEGER = 0x1fffffffffffff, // 2^53 - 1 | |
// MAX_INT32 = 0x7fffffff, // 2^31 - 1 | |
POWS_TEN = [1, 10, 100, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13], | |
SQRT_BASE = 1e7, | |
/* | |
* The limit on the value of DECIMAL_PLACES, TO_EXP_NEG, TO_EXP_POS, MIN_EXP, MAX_EXP, and | |
* the arguments to toExponential, toFixed, toFormat, and toPrecision, beyond which an | |
* exception is thrown (if ERRORS is true). | |
*/ | |
MAX = 1E9; // 0 to MAX_INT32 | |
/* | |
* Create and return a BigNumber constructor. | |
*/ | |
function constructorFactory(config) { | |
var div, parseNumeric, | |
// id tracks the caller function, so its name can be included in error messages. | |
id = 0, | |
P = BigNumber.prototype, | |
ONE = new BigNumber(1), | |
/********************************* EDITABLE DEFAULTS **********************************/ | |
/* | |
* The default values below must be integers within the inclusive ranges stated. | |
* The values can also be changed at run-time using BigNumber.config. | |
*/ | |
// The maximum number of decimal places for operations involving division. | |
DECIMAL_PLACES = 20, // 0 to MAX | |
/* | |
* The rounding mode used when rounding to the above decimal places, and when using | |
* toExponential, toFixed, toFormat and toPrecision, and round (default value). | |
* UP 0 Away from zero. | |
* DOWN 1 Towards zero. | |
* CEIL 2 Towards +Infinity. | |
* FLOOR 3 Towards -Infinity. | |
* HALF_UP 4 Towards nearest neighbour. If equidistant, up. | |
* HALF_DOWN 5 Towards nearest neighbour. If equidistant, down. | |
* HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour. | |
* HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity. | |
* HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity. | |
*/ | |
ROUNDING_MODE = 4, // 0 to 8 | |
// EXPONENTIAL_AT : [TO_EXP_NEG , TO_EXP_POS] | |
// The exponent value at and beneath which toString returns exponential notation. | |
// Number type: -7 | |
TO_EXP_NEG = -7, // 0 to -MAX | |
// The exponent value at and above which toString returns exponential notation. | |
// Number type: 21 | |
TO_EXP_POS = 21, // 0 to MAX | |
// RANGE : [MIN_EXP, MAX_EXP] | |
// The minimum exponent value, beneath which underflow to zero occurs. | |
// Number type: -324 (5e-324) | |
MIN_EXP = -1e7, // -1 to -MAX | |
// The maximum exponent value, above which overflow to Infinity occurs. | |
// Number type: 308 (1.7976931348623157e+308) | |
// For MAX_EXP > 1e7, e.g. new BigNumber('1e100000000').plus(1) may be slow. | |
MAX_EXP = 1e7, // 1 to MAX | |
// Whether BigNumber Errors are ever thrown. | |
ERRORS = true, // true or false | |
// Change to intValidatorNoErrors if ERRORS is false. | |
isValidInt = intValidatorWithErrors, // intValidatorWithErrors/intValidatorNoErrors | |
// Whether to use cryptographically-secure random number generation, if available. | |
CRYPTO = false, // true or false | |
/* | |
* The modulo mode used when calculating the modulus: a mod n. | |
* The quotient (q = a / n) is calculated according to the corresponding rounding mode. | |
* The remainder (r) is calculated as: r = a - n * q. | |
* | |
* UP 0 The remainder is positive if the dividend is negative, else is negative. | |
* DOWN 1 The remainder has the same sign as the dividend. | |
* This modulo mode is commonly known as 'truncated division' and is | |
* equivalent to (a % n) in JavaScript. | |
* FLOOR 3 The remainder has the same sign as the divisor (Python %). | |
* HALF_EVEN 6 This modulo mode implements the IEEE 754 remainder function. | |
* EUCLID 9 Euclidian division. q = sign(n) * floor(a / abs(n)). | |
* The remainder is always positive. | |
* | |
* The truncated division, floored division, Euclidian division and IEEE 754 remainder | |
* modes are commonly used for the modulus operation. | |
* Although the other rounding modes can also be used, they may not give useful results. | |
*/ | |
MODULO_MODE = 1, // 0 to 9 | |
// The maximum number of significant digits of the result of the toPower operation. | |
// If POW_PRECISION is 0, there will be unlimited significant digits. | |
POW_PRECISION = 0, // 0 to MAX | |
// The format specification used by the BigNumber.prototype.toFormat method. | |
FORMAT = { | |
decimalSeparator: '.', | |
groupSeparator: ',', | |
groupSize: 3, | |
secondaryGroupSize: 0, | |
fractionGroupSeparator: '\xA0', // non-breaking space | |
fractionGroupSize: 0 | |
}; | |
/******************************************************************************************/ | |
// CONSTRUCTOR | |
/* | |
* The BigNumber constructor and exported function. | |
* Create and return a new instance of a BigNumber object. | |
* | |
* n {number|string|BigNumber} A numeric value. | |
* [b] {number} The base of n. Integer, 2 to 64 inclusive. | |
*/ | |
function BigNumber(n, b) { | |
var c, e, i, num, len, str, | |
x = this; | |
// Enable constructor usage without new. | |
if (!(x instanceof BigNumber)) { | |
// 'BigNumber() constructor call without new: {n}' | |
if (ERRORS) raise(26, 'constructor call without new', n); | |
return new BigNumber(n, b); | |
} | |
// 'new BigNumber() base not an integer: {b}' | |
// 'new BigNumber() base out of range: {b}' | |
if (b == null || !isValidInt(b, 2, 64, id, 'base')) { | |
// Duplicate. | |
if (n instanceof BigNumber) { | |
x.s = n.s; | |
x.e = n.e; | |
x.c = (n = n.c) ? n.slice() : n; | |
id = 0; | |
return; | |
} | |
if ((num = typeof n == 'number') && n * 0 == 0) { | |
x.s = 1 / n < 0 ? (n = -n, -1) : 1; | |
// Fast path for integers. | |
if (n === ~~n) { | |
for (e = 0, i = n; i >= 10; i /= 10, e++); | |
x.e = e; | |
x.c = [n]; | |
id = 0; | |
return; | |
} | |
str = n + ''; | |
} else { | |
if (!isNumeric.test(str = n + '')) return parseNumeric(x, str, num); | |
x.s = str.charCodeAt(0) === 45 ? (str = str.slice(1), -1) : 1; | |
} | |
} else { | |
b = b | 0; | |
str = n + ''; | |
// Ensure return value is rounded to DECIMAL_PLACES as with other bases. | |
// Allow exponential notation to be used with base 10 argument. | |
if (b == 10) { | |
x = new BigNumber(n instanceof BigNumber ? n : str); | |
return round(x, DECIMAL_PLACES + x.e + 1, ROUNDING_MODE); | |
} | |
// Avoid potential interpretation of Infinity and NaN as base 44+ values. | |
// Any number in exponential form will fail due to the [Ee][+-]. | |
if ((num = typeof n == 'number') && n * 0 != 0 || | |
!(new RegExp('^-?' + (c = '[' + ALPHABET.slice(0, b) + ']+') + | |
'(?:\\.' + c + ')?$', b < 37 ? 'i' : '')).test(str)) { | |
return parseNumeric(x, str, num, b); | |
} | |
if (num) { | |
x.s = 1 / n < 0 ? (str = str.slice(1), -1) : 1; | |
if (ERRORS && str.replace(/^0\.0*|\./, '').length > 15) { | |
// 'new BigNumber() number type has more than 15 significant digits: {n}' | |
raise(id, tooManyDigits, n); | |
} | |
// Prevent later check for length on converted number. | |
num = false; | |
} else { | |
x.s = str.charCodeAt(0) === 45 ? (str = str.slice(1), -1) : 1; | |
} | |
str = convertBase(str, 10, b, x.s); | |
} | |
// Decimal point? | |
if ((e = str.indexOf('.')) > -1) str = str.replace('.', ''); | |
// Exponential form? | |
if ((i = str.search(/e/i)) > 0) { | |
// Determine exponent. | |
if (e < 0) e = i; | |
e += +str.slice(i + 1); | |
str = str.substring(0, i); | |
} else if (e < 0) { | |
// Integer. | |
e = str.length; | |
} | |
// Determine leading zeros. | |
for (i = 0; str.charCodeAt(i) === 48; i++); | |
// Determine trailing zeros. | |
for (len = str.length; str.charCodeAt(--len) === 48;); | |
str = str.slice(i, len + 1); | |
if (str) { | |
len = str.length; | |
// Disallow numbers with over 15 significant digits if number type. | |
// 'new BigNumber() number type has more than 15 significant digits: {n}' | |
if (num && ERRORS && len > 15 && (n > MAX_SAFE_INTEGER || n !== mathfloor(n))) { | |
raise(id, tooManyDigits, x.s * n); | |
} | |
e = e - i - 1; | |
// Overflow? | |
if (e > MAX_EXP) { | |
// Infinity. | |
x.c = x.e = null; | |
// Underflow? | |
} else if (e < MIN_EXP) { | |
// Zero. | |
x.c = [x.e = 0]; | |
} else { | |
x.e = e; | |
x.c = []; | |
// Transform base | |
// e is the base 10 exponent. | |
// i is where to slice str to get the first element of the coefficient array. | |
i = (e + 1) % LOG_BASE; | |
if (e < 0) i += LOG_BASE; | |
if (i < len) { | |
if (i) x.c.push(+str.slice(0, i)); | |
for (len -= LOG_BASE; i < len;) { | |
x.c.push(+str.slice(i, i += LOG_BASE)); | |
} | |
str = str.slice(i); | |
i = LOG_BASE - str.length; | |
} else { | |
i -= len; | |
} | |
for (; i--; str += '0'); | |
x.c.push(+str); | |
} | |
} else { | |
// Zero. | |
x.c = [x.e = 0]; | |
} | |
id = 0; | |
} | |
// CONSTRUCTOR PROPERTIES | |
BigNumber.another = constructorFactory; | |
BigNumber.ROUND_UP = 0; | |
BigNumber.ROUND_DOWN = 1; | |
BigNumber.ROUND_CEIL = 2; | |
BigNumber.ROUND_FLOOR = 3; | |
BigNumber.ROUND_HALF_UP = 4; | |
BigNumber.ROUND_HALF_DOWN = 5; | |
BigNumber.ROUND_HALF_EVEN = 6; | |
BigNumber.ROUND_HALF_CEIL = 7; | |
BigNumber.ROUND_HALF_FLOOR = 8; | |
BigNumber.EUCLID = 9; | |
/* | |
* Configure infrequently-changing library-wide settings. | |
* | |
* Accept an object or an argument list, with one or many of the following properties or | |
* parameters respectively: | |
* | |
* DECIMAL_PLACES {number} Integer, 0 to MAX inclusive | |
* ROUNDING_MODE {number} Integer, 0 to 8 inclusive | |
* EXPONENTIAL_AT {number|number[]} Integer, -MAX to MAX inclusive or | |
* [integer -MAX to 0 incl., 0 to MAX incl.] | |
* RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or | |
* [integer -MAX to -1 incl., integer 1 to MAX incl.] | |
* ERRORS {boolean|number} true, false, 1 or 0 | |
* CRYPTO {boolean|number} true, false, 1 or 0 | |
* MODULO_MODE {number} 0 to 9 inclusive | |
* POW_PRECISION {number} 0 to MAX inclusive | |
* FORMAT {object} See BigNumber.prototype.toFormat | |
* decimalSeparator {string} | |
* groupSeparator {string} | |
* groupSize {number} | |
* secondaryGroupSize {number} | |
* fractionGroupSeparator {string} | |
* fractionGroupSize {number} | |
* | |
* (The values assigned to the above FORMAT object properties are not checked for validity.) | |
* | |
* E.g. | |
* BigNumber.config(20, 4) is equivalent to | |
* BigNumber.config({ DECIMAL_PLACES : 20, ROUNDING_MODE : 4 }) | |
* | |
* Ignore properties/parameters set to null or undefined. | |
* Return an object with the properties current values. | |
*/ | |
BigNumber.config = BigNumber.set = function () { | |
var v, p, | |
i = 0, | |
r = {}, | |
a = arguments, | |
o = a[0], | |
has = o && typeof o == 'object' ? | |
function () { | |
if (o.hasOwnProperty(p)) return (v = o[p]) != null; | |
} : | |
function () { | |
if (a.length > i) return (v = a[i++]) != null; | |
}; | |
// DECIMAL_PLACES {number} Integer, 0 to MAX inclusive. | |
// 'config() DECIMAL_PLACES not an integer: {v}' | |
// 'config() DECIMAL_PLACES out of range: {v}' | |
if (has(p = 'DECIMAL_PLACES') && isValidInt(v, 0, MAX, 2, p)) { | |
DECIMAL_PLACES = v | 0; | |
} | |
r[p] = DECIMAL_PLACES; | |
// ROUNDING_MODE {number} Integer, 0 to 8 inclusive. | |
// 'config() ROUNDING_MODE not an integer: {v}' | |
// 'config() ROUNDING_MODE out of range: {v}' | |
if (has(p = 'ROUNDING_MODE') && isValidInt(v, 0, 8, 2, p)) { | |
ROUNDING_MODE = v | 0; | |
} | |
r[p] = ROUNDING_MODE; | |
// EXPONENTIAL_AT {number|number[]} | |
// Integer, -MAX to MAX inclusive or [integer -MAX to 0 inclusive, 0 to MAX inclusive]. | |
// 'config() EXPONENTIAL_AT not an integer: {v}' | |
// 'config() EXPONENTIAL_AT out of range: {v}' | |
if (has(p = 'EXPONENTIAL_AT')) { | |
if (isArray(v)) { | |
if (isValidInt(v[0], -MAX, 0, 2, p) && isValidInt(v[1], 0, MAX, 2, p)) { | |
TO_EXP_NEG = v[0] | 0; | |
TO_EXP_POS = v[1] | 0; | |
} | |
} else if (isValidInt(v, -MAX, MAX, 2, p)) { | |
TO_EXP_NEG = -(TO_EXP_POS = (v < 0 ? -v : v) | 0); | |
} | |
} | |
r[p] = [TO_EXP_NEG, TO_EXP_POS]; | |
// RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or | |
// [integer -MAX to -1 inclusive, integer 1 to MAX inclusive]. | |
// 'config() RANGE not an integer: {v}' | |
// 'config() RANGE cannot be zero: {v}' | |
// 'config() RANGE out of range: {v}' | |
if (has(p = 'RANGE')) { | |
if (isArray(v)) { | |
if (isValidInt(v[0], -MAX, -1, 2, p) && isValidInt(v[1], 1, MAX, 2, p)) { | |
MIN_EXP = v[0] | 0; | |
MAX_EXP = v[1] | 0; | |
} | |
} else if (isValidInt(v, -MAX, MAX, 2, p)) { | |
if (v | 0) MIN_EXP = -(MAX_EXP = (v < 0 ? -v : v) | 0); | |
else if (ERRORS) raise(2, p + ' cannot be zero', v); | |
} | |
} | |
r[p] = [MIN_EXP, MAX_EXP]; | |
// ERRORS {boolean|number} true, false, 1 or 0. | |
// 'config() ERRORS not a boolean or binary digit: {v}' | |
if (has(p = 'ERRORS')) { | |
if (v === !!v || v === 1 || v === 0) { | |
id = 0; | |
isValidInt = (ERRORS = !!v) ? intValidatorWithErrors : intValidatorNoErrors; | |
} else if (ERRORS) { | |
raise(2, p + notBool, v); | |
} | |
} | |
r[p] = ERRORS; | |
// CRYPTO {boolean|number} true, false, 1 or 0. | |
// 'config() CRYPTO not a boolean or binary digit: {v}' | |
// 'config() crypto unavailable: {crypto}' | |
if (has(p = 'CRYPTO')) { | |
if (v === true || v === false || v === 1 || v === 0) { | |
if (v) { | |
v = typeof crypto == 'undefined'; | |
if (!v && crypto && (crypto.getRandomValues || crypto.randomBytes)) { | |
CRYPTO = true; | |
} else if (ERRORS) { | |
raise(2, 'crypto unavailable', v ? void 0 : crypto); | |
} else { | |
CRYPTO = false; | |
} | |
} else { | |
CRYPTO = false; | |
} | |
} else if (ERRORS) { | |
raise(2, p + notBool, v); | |
} | |
} | |
r[p] = CRYPTO; | |
// MODULO_MODE {number} Integer, 0 to 9 inclusive. | |
// 'config() MODULO_MODE not an integer: {v}' | |
// 'config() MODULO_MODE out of range: {v}' | |
if (has(p = 'MODULO_MODE') && isValidInt(v, 0, 9, 2, p)) { | |
MODULO_MODE = v | 0; | |
} | |
r[p] = MODULO_MODE; | |
// POW_PRECISION {number} Integer, 0 to MAX inclusive. | |
// 'config() POW_PRECISION not an integer: {v}' | |
// 'config() POW_PRECISION out of range: {v}' | |
if (has(p = 'POW_PRECISION') && isValidInt(v, 0, MAX, 2, p)) { | |
POW_PRECISION = v | 0; | |
} | |
r[p] = POW_PRECISION; | |
// FORMAT {object} | |
// 'config() FORMAT not an object: {v}' | |
if (has(p = 'FORMAT')) { | |
if (typeof v == 'object') { | |
FORMAT = v; | |
} else if (ERRORS) { | |
raise(2, p + ' not an object', v); | |
} | |
} | |
r[p] = FORMAT; | |
return r; | |
}; | |
/* | |
* Return a new BigNumber whose value is the maximum of the arguments. | |
* | |
* arguments {number|string|BigNumber} | |
*/ | |
BigNumber.max = function () { | |
return maxOrMin(arguments, P.lt); | |
}; | |
/* | |
* Return a new BigNumber whose value is the minimum of the arguments. | |
* | |
* arguments {number|string|BigNumber} | |
*/ | |
BigNumber.min = function () { | |
return maxOrMin(arguments, P.gt); | |
}; | |
/* | |
* Return a new BigNumber with a random value equal to or greater than 0 and less than 1, | |
* and with dp, or DECIMAL_PLACES if dp is omitted, decimal places (or less if trailing | |
* zeros are produced). | |
* | |
* [dp] {number} Decimal places. Integer, 0 to MAX inclusive. | |
* | |
* 'random() decimal places not an integer: {dp}' | |
* 'random() decimal places out of range: {dp}' | |
* 'random() crypto unavailable: {crypto}' | |
*/ | |
BigNumber.random = (function () { | |
var pow2_53 = 0x20000000000000; | |
// Return a 53 bit integer n, where 0 <= n < 9007199254740992. | |
// Check if Math.random() produces more than 32 bits of randomness. | |
// If it does, assume at least 53 bits are produced, otherwise assume at least 30 bits. | |
// 0x40000000 is 2^30, 0x800000 is 2^23, 0x1fffff is 2^21 - 1. | |
var random53bitInt = (Math.random() * pow2_53) & 0x1fffff ? | |
function () { | |
return mathfloor(Math.random() * pow2_53); | |
} : | |
function () { | |
return ((Math.random() * 0x40000000 | 0) * 0x800000) + | |
(Math.random() * 0x800000 | 0); | |
}; | |
return function (dp) { | |
var a, b, e, k, v, | |
i = 0, | |
c = [], | |
rand = new BigNumber(ONE); | |
dp = dp == null || !isValidInt(dp, 0, MAX, 14) ? DECIMAL_PLACES : dp | 0; | |
k = mathceil(dp / LOG_BASE); | |
if (CRYPTO) { | |
// Browsers supporting crypto.getRandomValues. | |
if (crypto.getRandomValues) { | |
a = crypto.getRandomValues(new Uint32Array(k *= 2)); | |
for (; i < k;) { | |
// 53 bits: | |
// ((Math.pow(2, 32) - 1) * Math.pow(2, 21)).toString(2) | |
// 11111 11111111 11111111 11111111 11100000 00000000 00000000 | |
// ((Math.pow(2, 32) - 1) >>> 11).toString(2) | |
// 11111 11111111 11111111 | |
// 0x20000 is 2^21. | |
v = a[i] * 0x20000 + (a[i + 1] >>> 11); | |
// Rejection sampling: | |
// 0 <= v < 9007199254740992 | |
// Probability that v >= 9e15, is | |
// 7199254740992 / 9007199254740992 ~= 0.0008, i.e. 1 in 1251 | |
if (v >= 9e15) { | |
b = crypto.getRandomValues(new Uint32Array(2)); | |
a[i] = b[0]; | |
a[i + 1] = b[1]; | |
} else { | |
// 0 <= v <= 8999999999999999 | |
// 0 <= (v % 1e14) <= 99999999999999 | |
c.push(v % 1e14); | |
i += 2; | |
} | |
} | |
i = k / 2; | |
// Node.js supporting crypto.randomBytes. | |
} else if (crypto.randomBytes) { | |
// buffer | |
a = crypto.randomBytes(k *= 7); | |
for (; i < k;) { | |
// 0x1000000000000 is 2^48, 0x10000000000 is 2^40 | |
// 0x100000000 is 2^32, 0x1000000 is 2^24 | |
// 11111 11111111 11111111 11111111 11111111 11111111 11111111 | |
// 0 <= v < 9007199254740992 | |
v = ((a[i] & 31) * 0x1000000000000) + (a[i + 1] * 0x10000000000) + | |
(a[i + 2] * 0x100000000) + (a[i + 3] * 0x1000000) + | |
(a[i + 4] << 16) + (a[i + 5] << 8) + a[i + 6]; | |
if (v >= 9e15) { | |
crypto.randomBytes(7).copy(a, i); | |
} else { | |
// 0 <= (v % 1e14) <= 99999999999999 | |
c.push(v % 1e14); | |
i += 7; | |
} | |
} | |
i = k / 7; | |
} else { | |
CRYPTO = false; | |
if (ERRORS) raise(14, 'crypto unavailable', crypto); | |
} | |
} | |
// Use Math.random. | |
if (!CRYPTO) { | |
for (; i < k;) { | |
v = random53bitInt(); | |
if (v < 9e15) c[i++] = v % 1e14; | |
} | |
} | |
k = c[--i]; | |
dp %= LOG_BASE; | |
// Convert trailing digits to zeros according to dp. | |
if (k && dp) { | |
v = POWS_TEN[LOG_BASE - dp]; | |
c[i] = mathfloor(k / v) * v; | |
} | |
// Remove trailing elements which are zero. | |
for (; c[i] === 0; c.pop(), i--); | |
// Zero? | |
if (i < 0) { | |
c = [e = 0]; | |
} else { | |
// Remove leading elements which are zero and adjust exponent accordingly. | |
for (e = -1; c[0] === 0; c.splice(0, 1), e -= LOG_BASE); | |
// Count the digits of the first element of c to determine leading zeros, and... | |
for (i = 1, v = c[0]; v >= 10; v /= 10, i++); | |
// adjust the exponent accordingly. | |
if (i < LOG_BASE) e -= LOG_BASE - i; | |
} | |
rand.e = e; | |
rand.c = c; | |
return rand; | |
}; | |
})(); | |
// PRIVATE FUNCTIONS | |
// Convert a numeric string of baseIn to a numeric string of baseOut. | |
function convertBase(str, baseOut, baseIn, sign) { | |
var d, e, k, r, x, xc, y, | |
i = str.indexOf('.'), | |
dp = DECIMAL_PLACES, | |
rm = ROUNDING_MODE; | |
if (baseIn < 37) str = str.toLowerCase(); | |
// Non-integer. | |
if (i >= 0) { | |
k = POW_PRECISION; | |
// Unlimited precision. | |
POW_PRECISION = 0; | |
str = str.replace('.', ''); | |
y = new BigNumber(baseIn); | |
x = y.pow(str.length - i); | |
POW_PRECISION = k; | |
// Convert str as if an integer, then restore the fraction part by dividing the | |
// result by its base raised to a power. | |
y.c = toBaseOut(toFixedPoint(coeffToString(x.c), x.e), 10, baseOut); | |
y.e = y.c.length; | |
} | |
// Convert the number as integer. | |
xc = toBaseOut(str, baseIn, baseOut); | |
e = k = xc.length; | |
// Remove trailing zeros. | |
for (; xc[--k] == 0; xc.pop()); | |
if (!xc[0]) return '0'; | |
if (i < 0) { | |
--e; | |
} else { | |
x.c = xc; | |
x.e = e; | |
// sign is needed for correct rounding. | |
x.s = sign; | |
x = div(x, y, dp, rm, baseOut); | |
xc = x.c; | |
r = x.r; | |
e = x.e; | |
} | |
d = e + dp + 1; | |
// The rounding digit, i.e. the digit to the right of the digit that may be rounded up. | |
i = xc[d]; | |
k = baseOut / 2; | |
r = r || d < 0 || xc[d + 1] != null; | |
r = rm < 4 ? (i != null || r) && (rm == 0 || rm == (x.s < 0 ? 3 : 2)) : | |
i > k || i == k && (rm == 4 || r || rm == 6 && xc[d - 1] & 1 || | |
rm == (x.s < 0 ? 8 : 7)); | |
if (d < 1 || !xc[0]) { | |
// 1^-dp or 0. | |
str = r ? toFixedPoint('1', -dp) : '0'; | |
} else { | |
xc.length = d; | |
if (r) { | |
// Rounding up may mean the previous digit has to be rounded up and so on. | |
for (--baseOut; ++xc[--d] > baseOut;) { | |
xc[d] = 0; | |
if (!d) { | |
++e; | |
xc = [1].concat(xc); | |
} | |
} | |
} | |
// Determine trailing zeros. | |
for (k = xc.length; !xc[--k];); | |
// E.g. [4, 11, 15] becomes 4bf. | |
for (i = 0, str = ''; i <= k; str += ALPHABET.charAt(xc[i++])); | |
str = toFixedPoint(str, e); | |
} | |
// The caller will add the sign. | |
return str; | |
} | |
// Perform division in the specified base. Called by div and convertBase. | |
div = (function () { | |
// Assume non-zero x and k. | |
function multiply(x, k, base) { | |
var m, temp, xlo, xhi, | |
carry = 0, | |
i = x.length, | |
klo = k % SQRT_BASE, | |
khi = k / SQRT_BASE | 0; | |
for (x = x.slice(); i--;) { | |
xlo = x[i] % SQRT_BASE; | |
xhi = x[i] / SQRT_BASE | 0; | |
m = khi * xlo + xhi * klo; | |
temp = klo * xlo + ((m % SQRT_BASE) * SQRT_BASE) + carry; | |
carry = (temp / base | 0) + (m / SQRT_BASE | 0) + khi * xhi; | |
x[i] = temp % base; | |
} | |
if (carry) x = [carry].concat(x); | |
return x; | |
} | |
function compare(a, b, aL, bL) { | |
var i, cmp; | |
if (aL != bL) { | |
cmp = aL > bL ? 1 : -1; | |
} else { | |
for (i = cmp = 0; i < aL; i++) { | |
if (a[i] != b[i]) { | |
cmp = a[i] > b[i] ? 1 : -1; | |
break; | |
} | |
} | |
} | |
return cmp; | |
} | |
function subtract(a, b, aL, base) { | |
var i = 0; | |
// Subtract b from a. | |
for (; aL--;) { | |
a[aL] -= i; | |
i = a[aL] < b[aL] ? 1 : 0; | |
a[aL] = i * base + a[aL] - b[aL]; | |
} | |
// Remove leading zeros. | |
for (; !a[0] && a.length > 1; a.splice(0, 1)); | |
} | |
// x: dividend, y: divisor. | |
return function (x, y, dp, rm, base) { | |
var cmp, e, i, more, n, prod, prodL, q, qc, rem, remL, rem0, xi, xL, yc0, | |
yL, yz, | |
s = x.s == y.s ? 1 : -1, | |
xc = x.c, | |
yc = y.c; | |
// Either NaN, Infinity or 0? | |
if (!xc || !xc[0] || !yc || !yc[0]) { | |
return new BigNumber( | |
// Return NaN if either NaN, or both Infinity or 0. | |
!x.s || !y.s || (xc ? yc && xc[0] == yc[0] : !yc) ? NaN : | |
// Return ±0 if x is ±0 or y is ±Infinity, or return ±Infinity as y is ±0. | |
xc && xc[0] == 0 || !yc ? s * 0 : s / 0 | |
); | |
} | |
q = new BigNumber(s); | |
qc = q.c = []; | |
e = x.e - y.e; | |
s = dp + e + 1; | |
if (!base) { | |
base = BASE; | |
e = bitFloor(x.e / LOG_BASE) - bitFloor(y.e / LOG_BASE); | |
s = s / LOG_BASE | 0; | |
} | |
// Result exponent may be one less then the current value of e. | |
// The coefficients of the BigNumbers from convertBase may have trailing zeros. | |
for (i = 0; yc[i] == (xc[i] || 0); i++); | |
if (yc[i] > (xc[i] || 0)) e--; | |
if (s < 0) { | |
qc.push(1); | |
more = true; | |
} else { | |
xL = xc.length; | |
yL = yc.length; | |
i = 0; | |
s += 2; | |
// Normalise xc and yc so highest order digit of yc is >= base / 2. | |
n = mathfloor(base / (yc[0] + 1)); | |
// Not necessary, but to handle odd bases where yc[0] == ( base / 2 ) - 1. | |
// if ( n > 1 || n++ == 1 && yc[0] < base / 2 ) { | |
if (n > 1) { | |
yc = multiply(yc, n, base); | |
xc = multiply(xc, n, base); | |
yL = yc.length; | |
xL = xc.length; | |
} | |
xi = yL; | |
rem = xc.slice(0, yL); | |
remL = rem.length; | |
// Add zeros to make remainder as long as divisor. | |
for (; remL < yL; rem[remL++] = 0); | |
yz = yc.slice(); | |
yz = [0].concat(yz); | |
yc0 = yc[0]; | |
if (yc[1] >= base / 2) yc0++; | |
// Not necessary, but to prevent trial digit n > base, when using base 3. | |
// else if ( base == 3 && yc0 == 1 ) yc0 = 1 + 1e-15; | |
do { | |
n = 0; | |
// Compare divisor and remainder. | |
cmp = compare(yc, rem, yL, remL); | |
// If divisor < remainder. | |
if (cmp < 0) { | |
// Calculate trial digit, n. | |
rem0 = rem[0]; | |
if (yL != remL) rem0 = rem0 * base + (rem[1] || 0); | |
// n is how many times the divisor goes into the current remainder. | |
n = mathfloor(rem0 / yc0); | |
// Algorithm: | |
// 1. product = divisor * trial digit (n) | |
// 2. if product > remainder: product -= divisor, n-- | |
// 3. remainder -= product | |
// 4. if product was < remainder at 2: | |
// 5. compare new remainder and divisor | |
// 6. If remainder > divisor: remainder -= divisor, n++ | |
if (n > 1) { | |
// n may be > base only when base is 3. | |
if (n >= base) n = base - 1; | |
// product = divisor * trial digit. | |
prod = multiply(yc, n, base); | |
prodL = prod.length; | |
remL = rem.length; | |
// Compare product and remainder. | |
// If product > remainder. | |
// Trial digit n too high. | |
// n is 1 too high about 5% of the time, and is not known to have | |
// ever been more than 1 too high. | |
while (compare(prod, rem, prodL, remL) == 1) { | |
n--; | |
// Subtract divisor from product. | |
subtract(prod, yL < prodL ? yz : yc, prodL, base); | |
prodL = prod.length; | |
cmp = 1; | |
} | |
} else { | |
// n is 0 or 1, cmp is -1. | |
// If n is 0, there is no need to compare yc and rem again below, | |
// so change cmp to 1 to avoid it. | |
// If n is 1, leave cmp as -1, so yc and rem are compared again. | |
if (n == 0) { | |
// divisor < remainder, so n must be at least 1. | |
cmp = n = 1; | |
} | |
// product = divisor | |
prod = yc.slice(); | |
prodL = prod.length; | |
} | |
if (prodL < remL) prod = [0].concat(prod); | |
// Subtract product from remainder. | |
subtract(rem, prod, remL, base); | |
remL = rem.length; | |
// If product was < remainder. | |
if (cmp == -1) { | |
// Compare divisor and new remainder. | |
// If divisor < new remainder, subtract divisor from remainder. | |
// Trial digit n too low. | |
// n is 1 too low about 5% of the time, and very rarely 2 too low. | |
while (compare(yc, rem, yL, remL) < 1) { | |
n++; | |
// Subtract divisor from remainder. | |
subtract(rem, yL < remL ? yz : yc, remL, base); | |
remL = rem.length; | |
} | |
} | |
} else if (cmp === 0) { | |
n++; | |
rem = [0]; | |
} // else cmp === 1 and n will be 0 | |
// Add the next digit, n, to the result array. | |
qc[i++] = n; | |
// Update the remainder. | |
if (rem[0]) { | |
rem[remL++] = xc[xi] || 0; | |
} else { | |
rem = [xc[xi]]; | |
remL = 1; | |
} | |
} while ((xi++ < xL || rem[0] != null) && s--); | |
more = rem[0] != null; | |
// Leading zero? | |
if (!qc[0]) qc.splice(0, 1); | |
} | |
if (base == BASE) { | |
// To calculate q.e, first get the number of digits of qc[0]. | |
for (i = 1, s = qc[0]; s >= 10; s /= 10, i++); | |
round(q, dp + (q.e = i + e * LOG_BASE - 1) + 1, rm, more); | |
// Caller is convertBase. | |
} else { | |
q.e = e; | |
q.r = +more; | |
} | |
return q; | |
}; | |
})(); | |
/* | |
* Return a string representing the value of BigNumber n in fixed-point or exponential | |
* notation rounded to the specified decimal places or significant digits. | |
* | |
* n is a BigNumber. | |
* i is the index of the last digit required (i.e. the digit that may be rounded up). | |
* rm is the rounding mode. | |
* caller is caller id: toExponential 19, toFixed 20, toFormat 21, toPrecision 24. | |
*/ | |
function format(n, i, rm, caller) { | |
var c0, e, ne, len, str; | |
rm = rm != null && isValidInt(rm, 0, 8, caller, roundingMode) ? | |
rm | 0 : ROUNDING_MODE; | |
if (!n.c) return n.toString(); | |
c0 = n.c[0]; | |
ne = n.e; | |
if (i == null) { | |
str = coeffToString(n.c); | |
str = caller == 19 || caller == 24 && ne <= TO_EXP_NEG ? | |
toExponential(str, ne) : | |
toFixedPoint(str, ne); | |
} else { | |
n = round(new BigNumber(n), i, rm); | |
// n.e may have changed if the value was rounded up. | |
e = n.e; | |
str = coeffToString(n.c); | |
len = str.length; | |
// toPrecision returns exponential notation if the number of significant digits | |
// specified is less than the number of digits necessary to represent the integer | |
// part of the value in fixed-point notation. | |
// Exponential notation. | |
if (caller == 19 || caller == 24 && (i <= e || e <= TO_EXP_NEG)) { | |
// Append zeros? | |
for (; len < i; str += '0', len++); | |
str = toExponential(str, e); | |
// Fixed-point notation. | |
} else { | |
i -= ne; | |
str = toFixedPoint(str, e); | |
// Append zeros? | |
if (e + 1 > len) { | |
if (--i > 0) | |
for (str += '.'; i--; str += '0'); | |
} else { | |
i += e - len; | |
if (i > 0) { | |
if (e + 1 == len) str += '.'; | |
for (; i--; str += '0'); | |
} | |
} | |
} | |
} | |
return n.s < 0 && c0 ? '-' + str : str; | |
} | |
// Handle BigNumber.max and BigNumber.min. | |
function maxOrMin(args, method) { | |
var m, n, | |
i = 0; | |
if (isArray(args[0])) args = args[0]; | |
m = new BigNumber(args[0]); | |
for (; ++i < args.length;) { | |
n = new BigNumber(args[i]); | |
// If any number is NaN, return NaN. | |
if (!n.s) { | |
m = n; | |
break; | |
} else if (method.call(m, n)) { | |
m = n; | |
} | |
} | |
return m; | |
} | |
/* | |
* Return true if n is an integer in range, otherwise throw. | |
* Use for argument validation when ERRORS is true. | |
*/ | |
function intValidatorWithErrors(n, min, max, caller, name) { | |
if (n < min || n > max || n != truncate(n)) { | |
raise(caller, (name || 'decimal places') + | |
(n < min || n > max ? ' out of range' : ' not an integer'), n); | |
} | |
return true; | |
} | |
/* | |
* Strip trailing zeros, calculate base 10 exponent and check against MIN_EXP and MAX_EXP. | |
* Called by minus, plus and times. | |
*/ | |
function normalise(n, c, e) { | |
var i = 1, | |
j = c.length; | |
// Remove trailing zeros. | |
for (; !c[--j]; c.pop()); | |
// Calculate the base 10 exponent. First get the number of digits of c[0]. | |
for (j = c[0]; j >= 10; j /= 10, i++); | |
// Overflow? | |
if ((e = i + e * LOG_BASE - 1) > MAX_EXP) { | |
// Infinity. | |
n.c = n.e = null; | |
// Underflow? | |
} else if (e < MIN_EXP) { | |
// Zero. | |
n.c = [n.e = 0]; | |
} else { | |
n.e = e; | |
n.c = c; | |
} | |
return n; | |
} | |
// Handle values that fail the validity test in BigNumber. | |
parseNumeric = (function () { | |
var basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i, | |
dotAfter = /^([^.]+)\.$/, | |
dotBefore = /^\.([^.]+)$/, | |
isInfinityOrNaN = /^-?(Infinity|NaN)$/, | |
whitespaceOrPlus = /^\s*\+(?=[\w.])|^\s+|\s+$/g; | |
return function (x, str, num, b) { | |
var base, | |
s = num ? str : str.replace(whitespaceOrPlus, ''); | |
// No exception on ±Infinity or NaN. | |
if (isInfinityOrNaN.test(s)) { | |
x.s = isNaN(s) ? null : s < 0 ? -1 : 1; | |
} else { | |
if (!num) { | |
// basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i | |
s = s.replace(basePrefix, function (m, p1, p2) { | |
base = (p2 = p2.toLowerCase()) == 'x' ? 16 : p2 == 'b' ? 2 : 8; | |
return !b || b == base ? p1 : m; | |
}); | |
if (b) { | |
base = b; | |
// E.g. '1.' to '1', '.1' to '0.1' | |
s = s.replace(dotAfter, '$1').replace(dotBefore, '0.$1'); | |
} | |
if (str != s) return new BigNumber(s, base); | |
} | |
// 'new BigNumber() not a number: {n}' | |
// 'new BigNumber() not a base {b} number: {n}' | |
if (ERRORS) raise(id, 'not a' + (b ? ' base ' + b : '') + ' number', str); | |
x.s = null; | |
} | |
x.c = x.e = null; | |
id = 0; | |
} | |
})(); | |
// Throw a BigNumber Error. | |
function raise(caller, msg, val) { | |
var error = new Error([ | |
'new BigNumber', // 0 | |
'cmp', // 1 | |
'config', // 2 | |
'div', // 3 | |
'divToInt', // 4 | |
'eq', // 5 | |
'gt', // 6 | |
'gte', // 7 | |
'lt', // 8 | |
'lte', // 9 | |
'minus', // 10 | |
'mod', // 11 | |
'plus', // 12 | |
'precision', // 13 | |
'random', // 14 | |
'round', // 15 | |
'shift', // 16 | |
'times', // 17 | |
'toDigits', // 18 | |
'toExponential', // 19 | |
'toFixed', // 20 | |
'toFormat', // 21 | |
'toFraction', // 22 | |
'pow', // 23 | |
'toPrecision', // 24 | |
'toString', // 25 | |
'BigNumber' // 26 | |
][caller] + '() ' + msg + ': ' + val); | |
error.name = 'BigNumber Error'; | |
id = 0; | |
throw error; | |
} | |
/* | |
* Round x to sd significant digits using rounding mode rm. Check for over/under-flow. | |
* If r is truthy, it is known that there are more digits after the rounding digit. | |
*/ | |
function round(x, sd, rm, r) { | |
var d, i, j, k, n, ni, rd, | |
xc = x.c, | |
pows10 = POWS_TEN; | |
// if x is not Infinity or NaN... | |
if (xc) { | |
// rd is the rounding digit, i.e. the digit after the digit that may be rounded up. | |
// n is a base 1e14 number, the value of the element of array x.c containing rd. | |
// ni is the index of n within x.c. | |
// d is the number of digits of n. | |
// i is the index of rd within n including leading zeros. | |
// j is the actual index of rd within n (if < 0, rd is a leading zero). | |
out: { | |
// Get the number of digits of the first element of xc. | |
for (d = 1, k = xc[0]; k >= 10; k /= 10, d++); | |
i = sd - d; | |
// If the rounding digit is in the first element of xc... | |
if (i < 0) { | |
i += LOG_BASE; | |
j = sd; | |
n = xc[ni = 0]; | |
// Get the rounding digit at index j of n. | |
rd = n / pows10[d - j - 1] % 10 | 0; | |
} else { | |
ni = mathceil((i + 1) / LOG_BASE); | |
if (ni >= xc.length) { | |
if (r) { | |
// Needed by sqrt. | |
for (; xc.length <= ni; xc.push(0)); | |
n = rd = 0; | |
d = 1; | |
i %= LOG_BASE; | |
j = i - LOG_BASE + 1; | |
} else { | |
break out; | |
} | |
} else { | |
n = k = xc[ni]; | |
// Get the number of digits of n. | |
for (d = 1; k >= 10; k /= 10, d++); | |
// Get the index of rd within n. | |
i %= LOG_BASE; | |
// Get the index of rd within n, adjusted for leading zeros. | |
// The number of leading zeros of n is given by LOG_BASE - d. | |
j = i - LOG_BASE + d; | |
// Get the rounding digit at index j of n. | |
rd = j < 0 ? 0 : n / pows10[d - j - 1] % 10 | 0; | |
} | |
} | |
r = r || sd < 0 || | |
// Are there any non-zero digits after the rounding digit? | |
// The expression n % pows10[ d - j - 1 ] returns all digits of n to the right | |
// of the digit at j, e.g. if n is 908714 and j is 2, the expression gives 714. | |
xc[ni + 1] != null || (j < 0 ? n : n % pows10[d - j - 1]); | |
r = rm < 4 ? | |
(rd || r) && (rm == 0 || rm == (x.s < 0 ? 3 : 2)) : rd > 5 || rd == 5 && (rm == 4 || r || rm == 6 && | |
// Check whether the digit to the left of the rounding digit is odd. | |
((i > 0 ? j > 0 ? n / pows10[d - j] : 0 : xc[ni - 1]) % 10) & 1 || | |
rm == (x.s < 0 ? 8 : 7)); | |
if (sd < 1 || !xc[0]) { | |
xc.length = 0; | |
if (r) { | |
// Convert sd to decimal places. | |
sd -= x.e + 1; | |
// 1, 0.1, 0.01, 0.001, 0.0001 etc. | |
xc[0] = pows10[(LOG_BASE - sd % LOG_BASE) % LOG_BASE]; | |
x.e = -sd || 0; | |
} else { | |
// Zero. | |
xc[0] = x.e = 0; | |
} | |
return x; | |
} | |
// Remove excess digits. | |
if (i == 0) { | |
xc.length = ni; | |
k = 1; | |
ni--; | |
} else { | |
xc.length = ni + 1; | |
k = pows10[LOG_BASE - i]; | |
// E.g. 56700 becomes 56000 if 7 is the rounding digit. | |
// j > 0 means i > number of leading zeros of n. | |
xc[ni] = j > 0 ? mathfloor(n / pows10[d - j] % pows10[j]) * k : 0; | |
} | |
// Round up? | |
if (r) { | |
for (;;) { | |
// If the digit to be rounded up is in the first element of xc... | |
if (ni == 0) { | |
// i will be the length of xc[0] before k is added. | |
for (i = 1, j = xc[0]; j >= 10; j /= 10, i++); | |
j = xc[0] += k; | |
for (k = 1; j >= 10; j /= 10, k++); | |
// if i != k the length has increased. | |
if (i != k) { | |
x.e++; | |
if (xc[0] == BASE) xc[0] = 1; | |
} | |
break; | |
} else { | |
xc[ni] += k; | |
if (xc[ni] != BASE) break; | |
xc[ni--] = 0; | |
k = 1; | |
} | |
} | |
} | |
// Remove trailing zeros. | |
for (i = xc.length; xc[--i] === 0; xc.pop()); | |
} | |
// Overflow? Infinity. | |
if (x.e > MAX_EXP) { | |
x.c = x.e = null; | |
// Underflow? Zero. | |
} else if (x.e < MIN_EXP) { | |
x.c = [x.e = 0]; | |
} | |
} | |
return x; | |
} | |
// PROTOTYPE/INSTANCE METHODS | |
/* | |
* Return a new BigNumber whose value is the absolute value of this BigNumber. | |
*/ | |
P.absoluteValue = P.abs = function () { | |
var x = new BigNumber(this); | |
if (x.s < 0) x.s = 1; | |
return x; | |
}; | |
/* | |
* Return a new BigNumber whose value is the value of this BigNumber rounded to a whole | |
* number in the direction of Infinity. | |
*/ | |
P.ceil = function () { | |
return round(new BigNumber(this), this.e + 1, 2); | |
}; | |
/* | |
* Return | |
* 1 if the value of this BigNumber is greater than the value of BigNumber(y, b), | |
* -1 if the value of this BigNumber is less than the value of BigNumber(y, b), | |
* 0 if they have the same value, | |
* or null if the value of either is NaN. | |
*/ | |
P.comparedTo = P.cmp = function (y, b) { | |
id = 1; | |
return compare(this, new BigNumber(y, b)); | |
}; | |
/* | |
* Return the number of decimal places of the value of this BigNumber, or null if the value | |
* of this BigNumber is ±Infinity or NaN. | |
*/ | |
P.decimalPlaces = P.dp = function () { | |
var n, v, | |
c = this.c; | |
if (!c) return null; | |
n = ((v = c.length - 1) - bitFloor(this.e / LOG_BASE)) * LOG_BASE; | |
// Subtract the number of trailing zeros of the last number. | |
if (v = c[v]) | |
for (; v % 10 == 0; v /= 10, n--); | |
if (n < 0) n = 0; | |
return n; | |
}; | |
/* | |
* n / 0 = I | |
* n / N = N | |
* n / I = 0 | |
* 0 / n = 0 | |
* 0 / 0 = N | |
* 0 / N = N | |
* 0 / I = 0 | |
* N / n = N | |
* N / 0 = N | |
* N / N = N | |
* N / I = N | |
* I / n = I | |
* I / 0 = I | |
* I / N = N | |
* I / I = N | |
* | |
* Return a new BigNumber whose value is the value of this BigNumber divided by the value of | |
* BigNumber(y, b), rounded according to DECIMAL_PLACES and ROUNDING_MODE. | |
*/ | |
P.dividedBy = P.div = function (y, b) { | |
id = 3; | |
return div(this, new BigNumber(y, b), DECIMAL_PLACES, ROUNDING_MODE); | |
}; | |
/* | |
* Return a new BigNumber whose value is the integer part of dividing the value of this | |
* BigNumber by the value of BigNumber(y, b). | |
*/ | |
P.dividedToIntegerBy = P.divToInt = function (y, b) { | |
id = 4; | |
return div(this, new BigNumber(y, b), 0, 1); | |
}; | |
/* | |
* Return true if the value of this BigNumber is equal to the value of BigNumber(y, b), | |
* otherwise returns false. | |
*/ | |
P.equals = P.eq = function (y, b) { | |
id = 5; | |
return compare(this, new BigNumber(y, b)) === 0; | |
}; | |
/* | |
* Return a new BigNumber whose value is the value of this BigNumber rounded to a whole | |
* number in the direction of -Infinity. | |
*/ | |
P.floor = function () { | |
return round(new BigNumber(this), this.e + 1, 3); | |
}; | |
/* | |
* Return true if the value of this BigNumber is greater than the value of BigNumber(y, b), | |
* otherwise returns false. | |
*/ | |
P.greaterThan = P.gt = function (y, b) { | |
id = 6; | |
return compare(this, new BigNumber(y, b)) > 0; | |
}; | |
/* | |
* Return true if the value of this BigNumber is greater than or equal to the value of | |
* BigNumber(y, b), otherwise returns false. | |
*/ | |
P.greaterThanOrEqualTo = P.gte = function (y, b) { | |
id = 7; | |
return (b = compare(this, new BigNumber(y, b))) === 1 || b === 0; | |
}; | |
/* | |
* Return true if the value of this BigNumber is a finite number, otherwise returns false. | |
*/ | |
P.isFinite = function () { | |
return !!this.c; | |
}; | |
/* | |
* Return true if the value of this BigNumber is an integer, otherwise return false. | |
*/ | |
P.isInteger = P.isInt = function () { | |
return !!this.c && bitFloor(this.e / LOG_BASE) > this.c.length - 2; | |
}; | |
/* | |
* Return true if the value of this BigNumber is NaN, otherwise returns false. | |
*/ | |
P.isNaN = function () { | |
return !this.s; | |
}; | |
/* | |
* Return true if the value of this BigNumber is negative, otherwise returns false. | |
*/ | |
P.isNegative = P.isNeg = function () { | |
return this.s < 0; | |
}; | |
/* | |
* Return true if the value of this BigNumber is 0 or -0, otherwise returns false. | |
*/ | |
P.isZero = function () { | |
return !!this.c && this.c[0] == 0; | |
}; | |
/* | |
* Return true if the value of this BigNumber is less than the value of BigNumber(y, b), | |
* otherwise returns false. | |
*/ | |
P.lessThan = P.lt = function (y, b) { | |
id = 8; | |
return compare(this, new BigNumber(y, b)) < 0; | |
}; | |
/* | |
* Return true if the value of this BigNumber is less than or equal to the value of | |
* BigNumber(y, b), otherwise returns false. | |
*/ | |
P.lessThanOrEqualTo = P.lte = function (y, b) { | |
id = 9; | |
return (b = compare(this, new BigNumber(y, b))) === -1 || b === 0; | |
}; | |
/* | |
* n - 0 = n | |
* n - N = N | |
* n - I = -I | |
* 0 - n = -n | |
* 0 - 0 = 0 | |
* 0 - N = N | |
* 0 - I = -I | |
* N - n = N | |
* N - 0 = N | |
* N - N = N | |
* N - I = N | |
* I - n = I | |
* I - 0 = I | |
* I - N = N | |
* I - I = N | |
* | |
* Return a new BigNumber whose value is the value of this BigNumber minus the value of | |
* BigNumber(y, b). | |
*/ | |
P.minus = P.sub = function (y, b) { | |
var i, j, t, xLTy, | |
x = this, | |
a = x.s; | |
id = 10; | |
y = new BigNumber(y, b); | |
b = y.s; | |
// Either NaN? | |
if (!a || !b) return new BigNumber(NaN); | |
// Signs differ? | |
if (a != b) { | |
y.s = -b; | |
return x.plus(y); | |
} | |
var xe = x.e / LOG_BASE, | |
ye = y.e / LOG_BASE, | |
xc = x.c, | |
yc = y.c; | |
if (!xe || !ye) { | |
// Either Infinity? | |
if (!xc || !yc) return xc ? (y.s = -b, y) : new BigNumber(yc ? x : NaN); | |
// Either zero? | |
if (!xc[0] || !yc[0]) { | |
// Return y if y is non-zero, x if x is non-zero, or zero if both are zero. | |
return yc[0] ? (y.s = -b, y) : new BigNumber(xc[0] ? x : | |
// IEEE 754 (2008) 6.3: n - n = -0 when rounding to -Infinity | |
ROUNDING_MODE == 3 ? -0 : 0); | |
} | |
} | |
xe = bitFloor(xe); | |
ye = bitFloor(ye); | |
xc = xc.slice(); | |
// Determine which is the bigger number. | |
if (a = xe - ye) { | |
if (xLTy = a < 0) { | |
a = -a; | |
t = xc; | |
} else { | |
ye = xe; | |
t = yc; | |
} | |
t.reverse(); | |
// Prepend zeros to equalise exponents. | |
for (b = a; b--; t.push(0)); | |
t.reverse(); | |
} else { | |
// Exponents equal. Check digit by digit. | |
j = (xLTy = (a = xc.length) < (b = yc.length)) ? a : b; | |
for (a = b = 0; b < j; b++) { | |
if (xc[b] != yc[b]) { | |
xLTy = xc[b] < yc[b]; | |
break; | |
} | |
} | |
} | |
// x < y? Point xc to the array of the bigger number. | |
if (xLTy) t = xc, xc = yc, yc = t, y.s = -y.s; | |
b = (j = yc.length) - (i = xc.length); | |
// Append zeros to xc if shorter. | |
// No need to add zeros to yc if shorter as subtract only needs to start at yc.length. | |
if (b > 0) | |
for (; b--; xc[i++] = 0); | |
b = BASE - 1; | |
// Subtract yc from xc. | |
for (; j > a;) { | |
if (xc[--j] < yc[j]) { | |
for (i = j; i && !xc[--i]; xc[i] = b); | |
--xc[i]; | |
xc[j] += BASE; | |
} | |
xc[j] -= yc[j]; | |
} | |
// Remove leading zeros and adjust exponent accordingly. | |
for (; xc[0] == 0; xc.splice(0, 1), --ye); | |
// Zero? | |
if (!xc[0]) { | |
// Following IEEE 754 (2008) 6.3, | |
// n - n = +0 but n - n = -0 when rounding towards -Infinity. | |
y.s = ROUNDING_MODE == 3 ? -1 : 1; | |
y.c = [y.e = 0]; | |
return y; | |
} | |
// No need to check for Infinity as +x - +y != Infinity && -x - -y != Infinity | |
// for finite x and y. | |
return normalise(y, xc, ye); | |
}; | |
/* | |
* n % 0 = N | |
* n % N = N | |
* n % I = n | |
* 0 % n = 0 | |
* -0 % n = -0 | |
* 0 % 0 = N | |
* 0 % N = N | |
* 0 % I = 0 | |
* N % n = N | |
* N % 0 = N | |
* N % N = N | |
* N % I = N | |
* I % n = N | |
* I % 0 = N | |
* I % N = N | |
* I % I = N | |
* | |
* Return a new BigNumber whose value is the value of this BigNumber modulo the value of | |
* BigNumber(y, b). The result depends on the value of MODULO_MODE. | |
*/ | |
P.modulo = P.mod = function (y, b) { | |
var q, s, | |
x = this; | |
id = 11; | |
y = new BigNumber(y, b); | |
// Return NaN if x is Infinity or NaN, or y is NaN or zero. | |
if (!x.c || !y.s || y.c && !y.c[0]) { | |
return new BigNumber(NaN); | |
// Return x if y is Infinity or x is zero. | |
} else if (!y.c || x.c && !x.c[0]) { | |
return new BigNumber(x); | |
} | |
if (MODULO_MODE == 9) { | |
// Euclidian division: q = sign(y) * floor(x / abs(y)) | |
// r = x - qy where 0 <= r < abs(y) | |
s = y.s; | |
y.s = 1; | |
q = div(x, y, 0, 3); | |
y.s = s; | |
q.s *= s; | |
} else { | |
q = div(x, y, 0, MODULO_MODE); | |
} | |
return x.minus(q.times(y)); | |
}; | |
/* | |
* Return a new BigNumber whose value is the value of this BigNumber negated, | |
* i.e. multiplied by -1. | |
*/ | |
P.negated = P.neg = function () { | |
var x = new BigNumber(this); | |
x.s = -x.s || null; | |
return x; | |
}; | |
/* | |
* n + 0 = n | |
* n + N = N | |
* n + I = I | |
* 0 + n = n | |
* 0 + 0 = 0 | |
* 0 + N = N | |
* 0 + I = I | |
* N + n = N | |
* N + 0 = N | |
* N + N = N | |
* N + I = N | |
* I + n = I | |
* I + 0 = I | |
* I + N = N | |
* I + I = I | |
* | |
* Return a new BigNumber whose value is the value of this BigNumber plus the value of | |
* BigNumber(y, b). | |
*/ | |
P.plus = P.add = function (y, b) { | |
var t, | |
x = this, | |
a = x.s; | |
id = 12; | |
y = new BigNumber(y, b); | |
b = y.s; | |
// Either NaN? | |
if (!a || !b) return new BigNumber(NaN); | |
// Signs differ? | |
if (a != b) { | |
y.s = -b; | |
return x.minus(y); | |
} | |
var xe = x.e / LOG_BASE, | |
ye = y.e / LOG_BASE, | |
xc = x.c, | |
yc = y.c; | |
if (!xe || !ye) { | |
// Return ±Infinity if either ±Infinity. | |
if (!xc || !yc) return new BigNumber(a / 0); | |
// Either zero? | |
// Return y if y is non-zero, x if x is non-zero, or zero if both are zero. | |
if (!xc[0] || !yc[0]) return yc[0] ? y : new BigNumber(xc[0] ? x : a * 0); | |
} | |
xe = bitFloor(xe); | |
ye = bitFloor(ye); | |
xc = xc.slice(); | |
// Prepend zeros to equalise exponents. Faster to use reverse then do unshifts. | |
if (a = xe - ye) { | |
if (a > 0) { | |
ye = xe; | |
t = yc; | |
} else { | |
a = -a; | |
t = xc; | |
} | |
t.reverse(); | |
for (; a--; t.push(0)); | |
t.reverse(); | |
} | |
a = xc.length; | |
b = yc.length; | |
// Point xc to the longer array, and b to the shorter length. | |
if (a - b < 0) t = yc, yc = xc, xc = t, b = a; | |
// Only start adding at yc.length - 1 as the further digits of xc can be ignored. | |
for (a = 0; b;) { | |
a = (xc[--b] = xc[b] + yc[b] + a) / BASE | 0; | |
xc[b] = BASE === xc[b] ? 0 : xc[b] % BASE; | |
} | |
if (a) { | |
xc = [a].concat(xc); | |
++ye; | |
} | |
// No need to check for zero, as +x + +y != 0 && -x + -y != 0 | |
// ye = MAX_EXP + 1 possible | |
return normalise(y, xc, ye); | |
}; | |
/* | |
* Return the number of significant digits of the value of this BigNumber. | |
* | |
* [z] {boolean|number} Whether to count integer-part trailing zeros: true, false, 1 or 0. | |
*/ | |
P.precision = P.sd = function (z) { | |
var n, v, | |
x = this, | |
c = x.c; | |
// 'precision() argument not a boolean or binary digit: {z}' | |
if (z != null && z !== !!z && z !== 1 && z !== 0) { | |
if (ERRORS) raise(13, 'argument' + notBool, z); | |
if (z != !!z) z = null; | |
} | |
if (!c) return null; | |
v = c.length - 1; | |
n = v * LOG_BASE + 1; | |
if (v = c[v]) { | |
// Subtract the number of trailing zeros of the last element. | |
for (; v % 10 == 0; v /= 10, n--); | |
// Add the number of digits of the first element. | |
for (v = c[0]; v >= 10; v /= 10, n++); | |
} | |
if (z && x.e + 1 > n) n = x.e + 1; | |
return n; | |
}; | |
/* | |
* Return a new BigNumber whose value is the value of this BigNumber rounded to a maximum of | |
* dp decimal places using rounding mode rm, or to 0 and ROUNDING_MODE respectively if | |
* omitted. | |
* | |
* [dp] {number} Decimal places. Integer, 0 to MAX inclusive. | |
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
* | |
* 'round() decimal places out of range: {dp}' | |
* 'round() decimal places not an integer: {dp}' | |
* 'round() rounding mode not an integer: {rm}' | |
* 'round() rounding mode out of range: {rm}' | |
*/ | |
P.round = function (dp, rm) { | |
var n = new BigNumber(this); | |
if (dp == null || isValidInt(dp, 0, MAX, 15)) { | |
round(n, ~~dp + this.e + 1, rm == null || | |
!isValidInt(rm, 0, 8, 15, roundingMode) ? ROUNDING_MODE : rm | 0); | |
} | |
return n; | |
}; | |
/* | |
* Return a new BigNumber whose value is the value of this BigNumber shifted by k places | |
* (powers of 10). Shift to the right if n > 0, and to the left if n < 0. | |
* | |
* k {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive. | |
* | |
* If k is out of range and ERRORS is false, the result will be ±0 if k < 0, or ±Infinity | |
* otherwise. | |
* | |
* 'shift() argument not an integer: {k}' | |
* 'shift() argument out of range: {k}' | |
*/ | |
P.shift = function (k) { | |
var n = this; | |
return isValidInt(k, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER, 16, 'argument') | |
// k < 1e+21, or truncate(k) will produce exponential notation. | |
? | |
n.times('1e' + truncate(k)) : | |
new BigNumber(n.c && n.c[0] && (k < -MAX_SAFE_INTEGER || k > MAX_SAFE_INTEGER) ? | |
n.s * (k < 0 ? 0 : 1 / 0) : | |
n); | |
}; | |
/* | |
* sqrt(-n) = N | |
* sqrt( N) = N | |
* sqrt(-I) = N | |
* sqrt( I) = I | |
* sqrt( 0) = 0 | |
* sqrt(-0) = -0 | |
* | |
* Return a new BigNumber whose value is the square root of the value of this BigNumber, | |
* rounded according to DECIMAL_PLACES and ROUNDING_MODE. | |
*/ | |
P.squareRoot = P.sqrt = function () { | |
var m, n, r, rep, t, | |
x = this, | |
c = x.c, | |
s = x.s, | |
e = x.e, | |
dp = DECIMAL_PLACES + 4, | |
half = new BigNumber('0.5'); | |
// Negative/NaN/Infinity/zero? | |
if (s !== 1 || !c || !c[0]) { | |
return new BigNumber(!s || s < 0 && (!c || c[0]) ? NaN : c ? x : 1 / 0); | |
} | |
// Initial estimate. | |
s = Math.sqrt(+x); | |
// Math.sqrt underflow/overflow? | |
// Pass x to Math.sqrt as integer, then adjust the exponent of the result. | |
if (s == 0 || s == 1 / 0) { | |
n = coeffToString(c); | |
if ((n.length + e) % 2 == 0) n += '0'; | |
s = Math.sqrt(n); | |
e = bitFloor((e + 1) / 2) - (e < 0 || e % 2); | |
if (s == 1 / 0) { | |
n = '1e' + e; | |
} else { | |
n = s.toExponential(); | |
n = n.slice(0, n.indexOf('e') + 1) + e; | |
} | |
r = new BigNumber(n); | |
} else { | |
r = new BigNumber(s + ''); | |
} | |
// Check for zero. | |
// r could be zero if MIN_EXP is changed after the this value was created. | |
// This would cause a division by zero (x/t) and hence Infinity below, which would cause | |
// coeffToString to throw. | |
if (r.c[0]) { | |
e = r.e; | |
s = e + dp; | |
if (s < 3) s = 0; | |
// Newton-Raphson iteration. | |
for (;;) { | |
t = r; | |
r = half.times(t.plus(div(x, t, dp, 1))); | |
if (coeffToString(t.c).slice(0, s) === (n = | |
coeffToString(r.c)).slice(0, s)) { | |
// The exponent of r may here be one less than the final result exponent, | |
// e.g 0.0009999 (e-4) --> 0.001 (e-3), so adjust s so the rounding digits | |
// are indexed correctly. | |
if (r.e < e) --s; | |
n = n.slice(s - 3, s + 1); | |
// The 4th rounding digit may be in error by -1 so if the 4 rounding digits | |
// are 9999 or 4999 (i.e. approaching a rounding boundary) continue the | |
// iteration. | |
if (n == '9999' || !rep && n == '4999') { | |
// On the first iteration only, check to see if rounding up gives the | |
// exact result as the nines may infinitely repeat. | |
if (!rep) { | |
round(t, t.e + DECIMAL_PLACES + 2, 0); | |
if (t.times(t).eq(x)) { | |
r = t; | |
break; | |
} | |
} | |
dp += 4; | |
s += 4; | |
rep = 1; | |
} else { | |
// If rounding digits are null, 0{0,4} or 50{0,3}, check for exact | |
// result. If not, then there are further digits and m will be truthy. | |
if (!+n || !+n.slice(1) && n.charAt(0) == '5') { | |
// Truncate to the first rounding digit. | |
round(r, r.e + DECIMAL_PLACES + 2, 1); | |
m = !r.times(r).eq(x); | |
} | |
break; | |
} | |
} | |
} | |
} | |
return round(r, r.e + DECIMAL_PLACES + 1, ROUNDING_MODE, m); | |
}; | |
/* | |
* n * 0 = 0 | |
* n * N = N | |
* n * I = I | |
* 0 * n = 0 | |
* 0 * 0 = 0 | |
* 0 * N = N | |
* 0 * I = N | |
* N * n = N | |
* N * 0 = N | |
* N * N = N | |
* N * I = N | |
* I * n = I | |
* I * 0 = N | |
* I * N = N | |
* I * I = I | |
* | |
* Return a new BigNumber whose value is the value of this BigNumber times the value of | |
* BigNumber(y, b). | |
*/ | |
P.times = P.mul = function (y, b) { | |
var c, e, i, j, k, m, xcL, xlo, xhi, ycL, ylo, yhi, zc, | |
base, sqrtBase, | |
x = this, | |
xc = x.c, | |
yc = (id = 17, y = new BigNumber(y, b)).c; | |
// Either NaN, ±Infinity or ±0? | |
if (!xc || !yc || !xc[0] || !yc[0]) { | |
// Return NaN if either is NaN, or one is 0 and the other is Infinity. | |
if (!x.s || !y.s || xc && !xc[0] && !yc || yc && !yc[0] && !xc) { | |
y.c = y.e = y.s = null; | |
} else { | |
y.s *= x.s; | |
// Return ±Infinity if either is ±Infinity. | |
if (!xc || !yc) { | |
y.c = y.e = null; | |
// Return ±0 if either is ±0. | |
} else { | |
y.c = [0]; | |
y.e = 0; | |
} | |
} | |
return y; | |
} | |
e = bitFloor(x.e / LOG_BASE) + bitFloor(y.e / LOG_BASE); | |
y.s *= x.s; | |
xcL = xc.length; | |
ycL = yc.length; | |
// Ensure xc points to longer array and xcL to its length. | |
if (xcL < ycL) zc = xc, xc = yc, yc = zc, i = xcL, xcL = ycL, ycL = i; | |
// Initialise the result array with zeros. | |
for (i = xcL + ycL, zc = []; i--; zc.push(0)); | |
base = BASE; | |
sqrtBase = SQRT_BASE; | |
for (i = ycL; --i >= 0;) { | |
c = 0; | |
ylo = yc[i] % sqrtBase; | |
yhi = yc[i] / sqrtBase | 0; | |
for (k = xcL, j = i + k; j > i;) { | |
xlo = xc[--k] % sqrtBase; | |
xhi = xc[k] / sqrtBase | 0; | |
m = yhi * xlo + xhi * ylo; | |
xlo = ylo * xlo + ((m % sqrtBase) * sqrtBase) + zc[j] + c; | |
c = (xlo / base | 0) + (m / sqrtBase | 0) + yhi * xhi; | |
zc[j--] = xlo % base; | |
} | |
zc[j] = c; | |
} | |
if (c) { | |
++e; | |
} else { | |
zc.splice(0, 1); | |
} | |
return normalise(y, zc, e); | |
}; | |
/* | |
* Return a new BigNumber whose value is the value of this BigNumber rounded to a maximum of | |
* sd significant digits using rounding mode rm, or ROUNDING_MODE if rm is omitted. | |
* | |
* [sd] {number} Significant digits. Integer, 1 to MAX inclusive. | |
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
* | |
* 'toDigits() precision out of range: {sd}' | |
* 'toDigits() precision not an integer: {sd}' | |
* 'toDigits() rounding mode not an integer: {rm}' | |
* 'toDigits() rounding mode out of range: {rm}' | |
*/ | |
P.toDigits = function (sd, rm) { | |
var n = new BigNumber(this); | |
sd = sd == null || !isValidInt(sd, 1, MAX, 18, 'precision') ? null : sd | 0; | |
rm = rm == null || !isValidInt(rm, 0, 8, 18, roundingMode) ? ROUNDING_MODE : rm | 0; | |
return sd ? round(n, sd, rm) : n; | |
}; | |
/* | |
* Return a string representing the value of this BigNumber in exponential notation and | |
* rounded using ROUNDING_MODE to dp fixed decimal places. | |
* | |
* [dp] {number} Decimal places. Integer, 0 to MAX inclusive. | |
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
* | |
* 'toExponential() decimal places not an integer: {dp}' | |
* 'toExponential() decimal places out of range: {dp}' | |
* 'toExponential() rounding mode not an integer: {rm}' | |
* 'toExponential() rounding mode out of range: {rm}' | |
*/ | |
P.toExponential = function (dp, rm) { | |
return format(this, | |
dp != null && isValidInt(dp, 0, MAX, 19) ? ~~dp + 1 : null, rm, 19); | |
}; | |
/* | |
* Return a string representing the value of this BigNumber in fixed-point notation rounding | |
* to dp fixed decimal places using rounding mode rm, or ROUNDING_MODE if rm is omitted. | |
* | |
* Note: as with JavaScript's number type, (-0).toFixed(0) is '0', | |
* but e.g. (-0.00001).toFixed(0) is '-0'. | |
* | |
* [dp] {number} Decimal places. Integer, 0 to MAX inclusive. | |
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
* | |
* 'toFixed() decimal places not an integer: {dp}' | |
* 'toFixed() decimal places out of range: {dp}' | |
* 'toFixed() rounding mode not an integer: {rm}' | |
* 'toFixed() rounding mode out of range: {rm}' | |
*/ | |
P.toFixed = function (dp, rm) { | |
return format(this, dp != null && isValidInt(dp, 0, MAX, 20) ? | |
~~dp + this.e + 1 : null, rm, 20); | |
}; | |
/* | |
* Return a string representing the value of this BigNumber in fixed-point notation rounded | |
* using rm or ROUNDING_MODE to dp decimal places, and formatted according to the properties | |
* of the FORMAT object (see BigNumber.config). | |
* | |
* FORMAT = { | |
* decimalSeparator : '.', | |
* groupSeparator : ',', | |
* groupSize : 3, | |
* secondaryGroupSize : 0, | |
* fractionGroupSeparator : '\xA0', // non-breaking space | |
* fractionGroupSize : 0 | |
* }; | |
* | |
* [dp] {number} Decimal places. Integer, 0 to MAX inclusive. | |
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
* | |
* 'toFormat() decimal places not an integer: {dp}' | |
* 'toFormat() decimal places out of range: {dp}' | |
* 'toFormat() rounding mode not an integer: {rm}' | |
* 'toFormat() rounding mode out of range: {rm}' | |
*/ | |
P.toFormat = function (dp, rm) { | |
var str = format(this, dp != null && isValidInt(dp, 0, MAX, 21) ? | |
~~dp + this.e + 1 : null, rm, 21); | |
if (this.c) { | |
var i, | |
arr = str.split('.'), | |
g1 = +FORMAT.groupSize, | |
g2 = +FORMAT.secondaryGroupSize, | |
groupSeparator = FORMAT.groupSeparator, | |
intPart = arr[0], | |
fractionPart = arr[1], | |
isNeg = this.s < 0, | |
intDigits = isNeg ? intPart.slice(1) : intPart, | |
len = intDigits.length; | |
if (g2) i = g1, g1 = g2, g2 = i, len -= i; | |
if (g1 > 0 && len > 0) { | |
i = len % g1 || g1; | |
intPart = intDigits.substr(0, i); | |
for (; i < len; i += g1) { | |
intPart += groupSeparator + intDigits.substr(i, g1); | |
} | |
if (g2 > 0) intPart += groupSeparator + intDigits.slice(i); | |
if (isNeg) intPart = '-' + intPart; | |
} | |
str = fractionPart ? | |
intPart + FORMAT.decimalSeparator + ((g2 = +FORMAT.fractionGroupSize) ? | |
fractionPart.replace(new RegExp('\\d{' + g2 + '}\\B', 'g'), | |
'$&' + FORMAT.fractionGroupSeparator) : | |
fractionPart) : | |
intPart; | |
} | |
return str; | |
}; | |
/* | |
* Return a string array representing the value of this BigNumber as a simple fraction with | |
* an integer numerator and an integer denominator. The denominator will be a positive | |
* non-zero value less than or equal to the specified maximum denominator. If a maximum | |
* denominator is not specified, the denominator will be the lowest value necessary to | |
* represent the number exactly. | |
* | |
* [md] {number|string|BigNumber} Integer >= 1 and < Infinity. The maximum denominator. | |
* | |
* 'toFraction() max denominator not an integer: {md}' | |
* 'toFraction() max denominator out of range: {md}' | |
*/ | |
P.toFraction = function (md) { | |
var arr, d0, d2, e, exp, n, n0, q, s, | |
k = ERRORS, | |
x = this, | |
xc = x.c, | |
d = new BigNumber(ONE), | |
n1 = d0 = new BigNumber(ONE), | |
d1 = n0 = new BigNumber(ONE); | |
if (md != null) { | |
ERRORS = false; | |
n = new BigNumber(md); | |
ERRORS = k; | |
if (!(k = n.isInt()) || n.lt(ONE)) { | |
if (ERRORS) { | |
raise(22, | |
'max denominator ' + (k ? 'out of range' : 'not an integer'), md); | |
} | |
// ERRORS is false: | |
// If md is a finite non-integer >= 1, round it to an integer and use it. | |
md = !k && n.c && round(n, n.e + 1, 1).gte(ONE) ? n : null; | |
} | |
} | |
if (!xc) return x.toString(); | |
s = coeffToString(xc); | |
// Determine initial denominator. | |
// d is a power of 10 and the minimum max denominator that specifies the value exactly. | |
e = d.e = s.length - x.e - 1; | |
d.c[0] = POWS_TEN[(exp = e % LOG_BASE) < 0 ? LOG_BASE + exp : exp]; | |
md = !md || n.cmp(d) > 0 ? (e > 0 ? d : n1) : n; | |
exp = MAX_EXP; | |
MAX_EXP = 1 / 0; | |
n = new BigNumber(s); | |
// n0 = d1 = 0 | |
n0.c[0] = 0; | |
for (;;) { | |
q = div(n, d, 0, 1); | |
d2 = d0.plus(q.times(d1)); | |
if (d2.cmp(md) == 1) break; | |
d0 = d1; | |
d1 = d2; | |
n1 = n0.plus(q.times(d2 = n1)); | |
n0 = d2; | |
d = n.minus(q.times(d2 = d)); | |
n = d2; | |
} | |
d2 = div(md.minus(d0), d1, 0, 1); | |
n0 = n0.plus(d2.times(n1)); | |
d0 = d0.plus(d2.times(d1)); | |
n0.s = n1.s = x.s; | |
e *= 2; | |
// Determine which fraction is closer to x, n0/d0 or n1/d1 | |
arr = div(n1, d1, e, ROUNDING_MODE).minus(x).abs().cmp( | |
div(n0, d0, e, ROUNDING_MODE).minus(x).abs()) < 1 ? [n1.toString(), d1.toString()] : [n0.toString(), d0.toString()]; | |
MAX_EXP = exp; | |
return arr; | |
}; | |
/* | |
* Return the value of this BigNumber converted to a number primitive. | |
*/ | |
P.toNumber = function () { | |
return +this; | |
}; | |
/* | |
* Return a BigNumber whose value is the value of this BigNumber raised to the power n. | |
* If m is present, return the result modulo m. | |
* If n is negative round according to DECIMAL_PLACES and ROUNDING_MODE. | |
* If POW_PRECISION is non-zero and m is not present, round to POW_PRECISION using | |
* ROUNDING_MODE. | |
* | |
* The modular power operation works efficiently when x, n, and m are positive integers, | |
* otherwise it is equivalent to calculating x.toPower(n).modulo(m) (with POW_PRECISION 0). | |
* | |
* n {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive. | |
* [m] {number|string|BigNumber} The modulus. | |
* | |
* 'pow() exponent not an integer: {n}' | |
* 'pow() exponent out of range: {n}' | |
* | |
* Performs 54 loop iterations for n of 9007199254740991. | |
*/ | |
P.toPower = P.pow = function (n, m) { | |
var k, y, z, | |
i = mathfloor(n < 0 ? -n : +n), | |
x = this; | |
if (m != null) { | |
id = 23; | |
m = new BigNumber(m); | |
} | |
// Pass ±Infinity to Math.pow if exponent is out of range. | |
if (!isValidInt(n, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER, 23, 'exponent') && | |
(!isFinite(n) || i > MAX_SAFE_INTEGER && (n /= 0) || | |
parseFloat(n) != n && !(n = NaN)) || n == 0) { | |
k = Math.pow(+x, n); | |
return new BigNumber(m ? k % m : k); | |
} | |
if (m) { | |
if (n > 1 && x.gt(ONE) && x.isInt() && m.gt(ONE) && m.isInt()) { | |
x = x.mod(m); | |
} else { | |
z = m; | |
// Nullify m so only a single mod operation is performed at the end. | |
m = null; | |
} | |
} else if (POW_PRECISION) { | |
// Truncating each coefficient array to a length of k after each multiplication | |
// equates to truncating significant digits to POW_PRECISION + [28, 41], | |
// i.e. there will be a minimum of 28 guard digits retained. | |
// (Using + 1.5 would give [9, 21] guard digits.) | |
k = mathceil(POW_PRECISION / LOG_BASE + 2); | |
} | |
y = new BigNumber(ONE); | |
for (;;) { | |
if (i % 2) { | |
y = y.times(x); | |
if (!y.c) break; | |
if (k) { | |
if (y.c.length > k) y.c.length = k; | |
} else if (m) { | |
y = y.mod(m); | |
} | |
} | |
i = mathfloor(i / 2); | |
if (!i) break; | |
x = x.times(x); | |
if (k) { | |
if (x.c && x.c.length > k) x.c.length = k; | |
} else if (m) { | |
x = x.mod(m); | |
} | |
} | |
if (m) return y; | |
if (n < 0) y = ONE.div(y); | |
return z ? y.mod(z) : k ? round(y, POW_PRECISION, ROUNDING_MODE) : y; | |
}; | |
/* | |
* Return a string representing the value of this BigNumber rounded to sd significant digits | |
* using rounding mode rm or ROUNDING_MODE. If sd is less than the number of digits | |
* necessary to represent the integer part of the value in fixed-point notation, then use | |
* exponential notation. | |
* | |
* [sd] {number} Significant digits. Integer, 1 to MAX inclusive. | |
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
* | |
* 'toPrecision() precision not an integer: {sd}' | |
* 'toPrecision() precision out of range: {sd}' | |
* 'toPrecision() rounding mode not an integer: {rm}' | |
* 'toPrecision() rounding mode out of range: {rm}' | |
*/ | |
P.toPrecision = function (sd, rm) { | |
return format(this, sd != null && isValidInt(sd, 1, MAX, 24, 'precision') ? | |
sd | 0 : null, rm, 24); | |
}; | |
/* | |
* Return a string representing the value of this BigNumber in base b, or base 10 if b is | |
* omitted. If a base is specified, including base 10, round according to DECIMAL_PLACES and | |
* ROUNDING_MODE. If a base is not specified, and this BigNumber has a positive exponent | |
* that is equal to or greater than TO_EXP_POS, or a negative exponent equal to or less than | |
* TO_EXP_NEG, return exponential notation. | |
* | |
* [b] {number} Integer, 2 to 64 inclusive. | |
* | |
* 'toString() base not an integer: {b}' | |
* 'toString() base out of range: {b}' | |
*/ | |
P.toString = function (b) { | |
var str, | |
n = this, | |
s = n.s, | |
e = n.e; | |
// Infinity or NaN? | |
if (e === null) { | |
if (s) { | |
str = 'Infinity'; | |
if (s < 0) str = '-' + str; | |
} else { | |
str = 'NaN'; | |
} | |
} else { | |
str = coeffToString(n.c); | |
if (b == null || !isValidInt(b, 2, 64, 25, 'base')) { | |
str = e <= TO_EXP_NEG || e >= TO_EXP_POS ? | |
toExponential(str, e) : | |
toFixedPoint(str, e); | |
} else { | |
str = convertBase(toFixedPoint(str, e), b | 0, 10, s); | |
} | |
if (s < 0 && n.c[0]) str = '-' + str; | |
} | |
return str; | |
}; | |
/* | |
* Return a new BigNumber whose value is the value of this BigNumber truncated to a whole | |
* number. | |
*/ | |
P.truncated = P.trunc = function () { | |
return round(new BigNumber(this), this.e + 1, 1); | |
}; | |
/* | |
* Return as toString, but do not accept a base argument, and include the minus sign for | |
* negative zero. | |
*/ | |
P.valueOf = P.toJSON = function () { | |
var str, | |
n = this, | |
e = n.e; | |
if (e === null) return n.toString(); | |
str = coeffToString(n.c); | |
str = e <= TO_EXP_NEG || e >= TO_EXP_POS ? | |
toExponential(str, e) : | |
toFixedPoint(str, e); | |
return n.s < 0 ? '-' + str : str; | |
}; | |
P.isBigNumber = true; | |
if (config != null) BigNumber.config(config); | |
return BigNumber; | |
} | |
// PRIVATE HELPER FUNCTIONS | |
function bitFloor(n) { | |
var i = n | 0; | |
return n > 0 || n === i ? i : i - 1; | |
} | |
// Return a coefficient array as a string of base 10 digits. | |
function coeffToString(a) { | |
var s, z, | |
i = 1, | |
j = a.length, | |
r = a[0] + ''; | |
for (; i < j;) { | |
s = a[i++] + ''; | |
z = LOG_BASE - s.length; | |
for (; z--; s = '0' + s); | |
r += s; | |
} | |
// Determine trailing zeros. | |
for (j = r.length; r.charCodeAt(--j) === 48;); | |
return r.slice(0, j + 1 || 1); | |
} | |
// Compare the value of BigNumbers x and y. | |
function compare(x, y) { | |
var a, b, | |
xc = x.c, | |
yc = y.c, | |
i = x.s, | |
j = y.s, | |
k = x.e, | |
l = y.e; | |
// Either NaN? | |
if (!i || !j) return null; | |
a = xc && !xc[0]; | |
b = yc && !yc[0]; | |
// Either zero? | |
if (a || b) return a ? b ? 0 : -j : i; | |
// Signs differ? | |
if (i != j) return i; | |
a = i < 0; | |
b = k == l; | |
// Either Infinity? | |
if (!xc || !yc) return b ? 0 : !xc ^ a ? 1 : -1; | |
// Compare exponents. | |
if (!b) return k > l ^ a ? 1 : -1; | |
j = (k = xc.length) < (l = yc.length) ? k : l; | |
// Compare digit by digit. | |
for (i = 0; i < j; i++) | |
if (xc[i] != yc[i]) return xc[i] > yc[i] ^ a ? 1 : -1; | |
// Compare lengths. | |
return k == l ? 0 : k > l ^ a ? 1 : -1; | |
} | |
/* | |
* Return true if n is a valid number in range, otherwise false. | |
* Use for argument validation when ERRORS is false. | |
* Note: parseInt('1e+1') == 1 but parseFloat('1e+1') == 10. | |
*/ | |
function intValidatorNoErrors(n, min, max) { | |
return (n = truncate(n)) >= min && n <= max; | |
} | |
function isArray(obj) { | |
return Object.prototype.toString.call(obj) == '[object Array]'; | |
} | |
/* | |
* Convert string of baseIn to an array of numbers of baseOut. | |
* Eg. convertBase('255', 10, 16) returns [15, 15]. | |
* Eg. convertBase('ff', 16, 10) returns [2, 5, 5]. | |
*/ | |
function toBaseOut(str, baseIn, baseOut) { | |
var j, | |
arr = [0], | |
arrL, | |
i = 0, | |
len = str.length; | |
for (; i < len;) { | |
for (arrL = arr.length; arrL--; arr[arrL] *= baseIn); | |
arr[j = 0] += ALPHABET.indexOf(str.charAt(i++)); | |
for (; j < arr.length; j++) { | |
if (arr[j] > baseOut - 1) { | |
if (arr[j + 1] == null) arr[j + 1] = 0; | |
arr[j + 1] += arr[j] / baseOut | 0; | |
arr[j] %= baseOut; | |
} | |
} | |
} | |
return arr.reverse(); | |
} | |
function toExponential(str, e) { | |
return (str.length > 1 ? str.charAt(0) + '.' + str.slice(1) : str) + | |
(e < 0 ? 'e' : 'e+') + e; | |
} | |
function toFixedPoint(str, e) { | |
var len, z; | |
// Negative exponent? | |
if (e < 0) { | |
// Prepend zeros. | |
for (z = '0.'; ++e; z += '0'); | |
str = z + str; | |
// Positive exponent | |
} else { | |
len = str.length; | |
// Append zeros. | |
if (++e > len) { | |
for (z = '0', e -= len; --e; z += '0'); | |
str += z; | |
} else if (e < len) { | |
str = str.slice(0, e) + '.' + str.slice(e); | |
} | |
} | |
return str; | |
} | |
function truncate(n) { | |
n = parseFloat(n); | |
return n < 0 ? mathceil(n) : mathfloor(n); | |
} | |
BigNumber = constructorFactory(); | |
BigNumber['default'] = BigNumber.BigNumber = BigNumber; | |
function json_parse(options) { | |
"use strict"; | |
var _options = { | |
"strict": false, // not being strict means do not generate syntax errors for "duplicate key" | |
"storeAsString": false // toggles whether the values should be stored as BigNumber (default) or a string | |
}; | |
// If there are options, then use them to override the default _options | |
if (options !== undefined && options !== null) { | |
if (options.strict === true) { | |
_options.strict = true; | |
} | |
if (options.storeAsString === true) { | |
_options.storeAsString = true; | |
} | |
} | |
var at, // The index of the current character | |
ch, // The current character | |
escapee = { | |
'"': '"', | |
'\\': '\\', | |
'/': '/', | |
b: '\b', | |
f: '\f', | |
n: '\n', | |
r: '\r', | |
t: '\t' | |
}, | |
text, | |
error = function (m) { | |
// Call error when something is wrong. | |
throw { | |
name: 'SyntaxError', | |
message: m, | |
at: at, | |
text: text | |
}; | |
}, | |
next = function (c) { | |
// If a c parameter is provided, verify that it matches the current character. | |
if (c && c !== ch) { | |
error("Expected '" + c + "' instead of '" + ch + "'"); | |
} | |
// Get the next character. When there are no more characters, | |
// return the empty string. | |
ch = text.charAt(at); | |
at += 1; | |
return ch; | |
}, | |
number = function () { | |
// Parse a number value. | |
var number, | |
string = ''; | |
if (ch === '-') { | |
string = '-'; | |
next('-'); | |
} | |
while (ch >= '0' && ch <= '9') { | |
string += ch; | |
next(); | |
} | |
if (ch === '.') { | |
string += '.'; | |
while (next() && ch >= '0' && ch <= '9') { | |
string += ch; | |
} | |
} | |
if (ch === 'e' || ch === 'E') { | |
string += ch; | |
next(); | |
if (ch === '-' || ch === '+') { | |
string += ch; | |
next(); | |
} | |
while (ch >= '0' && ch <= '9') { | |
string += ch; | |
next(); | |
} | |
} | |
number = +string; | |
if (!isFinite(number)) { | |
error("Bad number"); | |
} else { | |
if (BigNumber == null) | |
BigNumber = require('bignumber.js'); | |
//if (number > 9007199254740992 || number < -9007199254740992) | |
// Bignumber has stricter check: everything with length > 15 digits disallowed | |
if (string.length > 15) | |
return (_options.storeAsString === true) ? string : new BigNumber(string); | |
return number; | |
} | |
}, | |
string = function () { | |
// Parse a string value. | |
var hex, | |
i, | |
string = '', | |
uffff; | |
// When parsing for string values, we must look for " and \ characters. | |
if (ch === '"') { | |
while (next()) { | |
if (ch === '"') { | |
next(); | |
return string; | |
} | |
if (ch === '\\') { | |
next(); | |
if (ch === 'u') { | |
uffff = 0; | |
for (i = 0; i < 4; i += 1) { | |
hex = parseInt(next(), 16); | |
if (!isFinite(hex)) { | |
break; | |
} | |
uffff = uffff * 16 + hex; | |
} | |
string += String.fromCharCode(uffff); | |
} else if (typeof escapee[ch] === 'string') { | |
string += escapee[ch]; | |
} else { | |
break; | |
} | |
} else { | |
string += ch; | |
} | |
} | |
} | |
error("Bad string"); | |
}, | |
white = function () { | |
// Skip whitespace. | |
while (ch && ch <= ' ') { | |
next(); | |
} | |
}, | |
word = function () { | |
// true, false, or null. | |
switch (ch) { | |
case 't': | |
next('t'); | |
next('r'); | |
next('u'); | |
next('e'); | |
return true; | |
case 'f': | |
next('f'); | |
next('a'); | |
next('l'); | |
next('s'); | |
next('e'); | |
return false; | |
case 'n': | |
next('n'); | |
next('u'); | |
next('l'); | |
next('l'); | |
return null; | |
} | |
error("Unexpected '" + ch + "'"); | |
}, | |
value, // Place holder for the value function. | |
array = function () { | |
// Parse an array value. | |
var array = []; | |
if (ch === '[') { | |
next('['); | |
white(); | |
if (ch === ']') { | |
next(']'); | |
return array; // empty array | |
} | |
while (ch) { | |
array.push(value()); | |
white(); | |
if (ch === ']') { | |
next(']'); | |
return array; | |
} | |
next(','); | |
white(); | |
} | |
} | |
error("Bad array"); | |
}, | |
object = function () { | |
// Parse an object value. | |
var key, | |
object = {}; | |
if (ch === '{') { | |
next('{'); | |
white(); | |
if (ch === '}') { | |
next('}'); | |
return object; // empty object | |
} | |
while (ch) { | |
key = string(); | |
white(); | |
next(':'); | |
if (_options.strict === true && Object.hasOwnProperty.call(object, key)) { | |
error('Duplicate key "' + key + '"'); | |
} | |
object[key] = value(); | |
white(); | |
if (ch === '}') { | |
next('}'); | |
return object; | |
} | |
next(','); | |
white(); | |
} | |
} | |
error("Bad object"); | |
}; | |
value = function () { | |
// Parse a JSON value. It could be an object, an array, a string, a number, | |
// or a word. | |
white(); | |
switch (ch) { | |
case '{': | |
return object(); | |
case '[': | |
return array(); | |
case '"': | |
return string(); | |
case '-': | |
return number(); | |
default: | |
return ch >= '0' && ch <= '9' ? number() : word(); | |
} | |
}; | |
// Return the json_parse function. It will have access to all of the above | |
// functions and variables. | |
return function (source, reviver) { | |
var result; | |
text = source + ''; | |
at = 0; | |
ch = ' '; | |
result = value(); | |
white(); | |
if (ch) { | |
error("Syntax error"); | |
} | |
return typeof reviver === 'function' ? | |
(function walk(holder, key) { | |
var k, v, value = holder[key]; | |
if (value && typeof value === 'object') { | |
Object.keys(value).forEach(function (k) { | |
v = walk(value, k); | |
if (v !== undefined) { | |
value[k] = v; | |
} else { | |
delete value[k]; | |
} | |
}); | |
} | |
return reviver.call(holder, key, value); | |
}({ | |
'': result | |
}, '')) : | |
result; | |
}; | |
} | |
var jso = {} | |
function f(n) { | |
// Format integers to have at least two digits. | |
return n < 10 ? '0' + n : n; | |
} | |
var cx = /[\u0000\u00ad\u0600-\u0604\u070f\u17b4\u17b5\u200c-\u200f\u2028-\u202f\u2060-\u206f\ufeff\ufff0-\uffff]/g, | |
escapable = /[\\\"\x00-\x1f\x7f-\x9f\u00ad\u0600-\u0604\u070f\u17b4\u17b5\u200c-\u200f\u2028-\u202f\u2060-\u206f\ufeff\ufff0-\uffff]/g, | |
gap, | |
indent, | |
meta = { // table of character substitutions | |
'\b': '\\b', | |
'\t': '\\t', | |
'\n': '\\n', | |
'\f': '\\f', | |
'\r': '\\r', | |
'"': '\\"', | |
'\\': '\\\\' | |
}, | |
rep; | |
function quote(string) { | |
// If the string contains no control characters, no quote characters, and no | |
// backslash characters, then we can safely slap some quotes around it. | |
// Otherwise we must also replace the offending characters with safe escape | |
// sequences. | |
escapable.lastIndex = 0; | |
return escapable.test(string) ? '"' + string.replace(escapable, function (a) { | |
var c = meta[a]; | |
return typeof c === 'string' ? | |
c : | |
'\\u' + ('0000' + a.charCodeAt(0).toString(16)).slice(-4); | |
}) + '"' : '"' + string + '"'; | |
} | |
function str(key, holder) { | |
// Produce a string from holder[key]. | |
var i, // The loop counter. | |
k, // The member key. | |
v, // The member value. | |
length, | |
mind = gap, | |
partial, | |
value = holder[key], | |
isBigNumber = value != null && (value instanceof BigNumber || value.isBigNumber);; | |
// If the value has a toJSON method, call it to obtain a replacement value. | |
if (value && typeof value === 'object' && | |
typeof value.toJSON === 'function') { | |
value = value.toJSON(key); | |
} | |
// If we were called with a replacer function, then call the replacer to | |
// obtain a replacement value. | |
if (typeof rep === 'function') { | |
value = rep.call(holder, key, value); | |
} | |
// What happens next depends on the value's type. | |
switch (typeof value) { | |
case 'string': | |
if (isBigNumber) { | |
return value; | |
} else { | |
return quote(value); | |
} | |
case 'number': | |
// JSON numbers must be finite. Encode non-finite numbers as null. | |
return isFinite(value) ? String(value) : 'null'; | |
case 'boolean': | |
case 'null': | |
// If the value is a boolean or null, convert it to a string. Note: | |
// typeof null does not produce 'null'. The case is included here in | |
// the remote chance that this gets fixed someday. | |
return String(value); | |
// If the type is 'object', we might be dealing with an object or an array or | |
// null. | |
case 'object': | |
// Due to a specification blunder in ECMAScript, typeof null is 'object', | |
// so watch out for that case. | |
if (!value) { | |
return 'null'; | |
} | |
// Make an array to hold the partial results of stringifying this object value. | |
gap += indent; | |
partial = []; | |
// Is the value an array? | |
if (Object.prototype.toString.apply(value) === '[object Array]') { | |
// The value is an array. Stringify every element. Use null as a placeholder | |
// for non-JSON values. | |
length = value.length; | |
for (i = 0; i < length; i += 1) { | |
partial[i] = str(i, value) || 'null'; | |
} | |
// Join all of the elements together, separated with commas, and wrap them in | |
// brackets. | |
v = partial.length === 0 ? | |
'[]' : | |
gap ? | |
'[\n' + gap + partial.join(',\n' + gap) + '\n' + mind + ']' : | |
'[' + partial.join(',') + ']'; | |
gap = mind; | |
return v; | |
} | |
// If the replacer is an array, use it to select the members to be stringified. | |
if (rep && typeof rep === 'object') { | |
length = rep.length; | |
for (i = 0; i < length; i += 1) { | |
if (typeof rep[i] === 'string') { | |
k = rep[i]; | |
v = str(k, value); | |
if (v) { | |
partial.push(quote(k) + (gap ? ': ' : ':') + v); | |
} | |
} | |
} | |
} else { | |
// Otherwise, iterate through all of the keys in the object. | |
Object.keys(value).forEach(function (k) { | |
var v = str(k, value); | |
if (v) { | |
partial.push(quote(k) + (gap ? ': ' : ':') + v); | |
} | |
}); | |
} | |
// Join all of the member texts together, separated with commas, | |
// and wrap them in braces. | |
v = partial.length === 0 ? | |
'{}' : | |
gap ? | |
'{\n' + gap + partial.join(',\n' + gap) + '\n' + mind + '}' : | |
'{' + partial.join(',') + '}'; | |
gap = mind; | |
return v; | |
} | |
} | |
// If the JSON object does not yet have a stringify method, give it one. | |
jso.stringify = function (value, replacer, space) { | |
// The stringify method takes a value and an optional replacer, and an optional | |
// space parameter, and returns a JSON text. The replacer can be a function | |
// that can replace values, or an array of strings that will select the keys. | |
// A default replacer method can be provided. Use of the space parameter can | |
// produce text that is more easily readable. | |
var i; | |
gap = ''; | |
indent = ''; | |
// If the space parameter is a number, make an indent string containing that | |
// many spaces. | |
if (typeof space === 'number') { | |
for (i = 0; i < space; i += 1) { | |
indent += ' '; | |
} | |
// If the space parameter is a string, it will be used as the indent string. | |
} else if (typeof space === 'string') { | |
indent = space; | |
} | |
// If there is a replacer, it must be a function or an array. | |
// Otherwise, throw an error. | |
rep = replacer; | |
if (replacer && typeof replacer !== 'function' && | |
(typeof replacer !== 'object' || | |
typeof replacer.length !== 'number')) { | |
throw new Error('JSON.stringify'); | |
} | |
// Make a fake root object containing our value under the key of ''. | |
// Return the result of stringifying the value. | |
return str('', { | |
'': value | |
}); | |
}; | |
jso.get = function (options) { | |
return { | |
parse: json_parse(options), | |
stringify: jso.stringify | |
} | |
} | |
var JSON = jso.get(); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function constructorFactory(e){function t(e,r){var o,i,u,c,g,h,S=this;if(!(S instanceof t))return B&&f(26,"constructor call without new",e),new t(e,r);if(null!=r&&b(r,2,64,a,"base")){if(r=0|r,h=e+"",10==r)return S=new t(e instanceof t?e:h),s(S,p+S.e+1,A);if((c="number"==typeof e)&&0*e!=0||!new RegExp("^-?"+(o="["+ALPHABET.slice(0,r)+"]+")+"(?:\\."+o+")?$",37>r?"i":"").test(h))return l(S,h,c,r);c?(S.s=0>1/e?(h=h.slice(1),-1):1,B&&h.replace(/^0\.0*|\./,"").length>15&&f(a,tooManyDigits,e),c=!1):S.s=45===h.charCodeAt(0)?(h=h.slice(1),-1):1,h=n(h,10,r,S.s)}else{if(e instanceof t)return S.s=e.s,S.e=e.e,S.c=(e=e.c)?e.slice():e,void(a=0);if((c="number"==typeof e)&&0*e==0){if(S.s=0>1/e?(e=-e,-1):1,e===~~e){for(i=0,u=e;u>=10;u/=10,i++);return S.e=i,S.c=[e],void(a=0)}h=e+""}else{if(!isNumeric.test(h=e+""))return l(S,h,c);S.s=45===h.charCodeAt(0)?(h=h.slice(1),-1):1}}for((i=h.indexOf("."))>-1&&(h=h.replace(".","")),(u=h.search(/e/i))>0?(0>i&&(i=u),i+=+h.slice(u+1),h=h.substring(0,u)):0>i&&(i=h.length),u=0;48===h.charCodeAt(u);u++);for(g=h.length;48===h.charCodeAt(--g););if(h=h.slice(u,g+1))if(g=h.length,c&&B&&g>15&&(e>MAX_SAFE_INTEGER||e!==mathfloor(e))&&f(a,tooManyDigits,S.s*e),i=i-u-1,i>d)S.c=S.e=null;else if(m>i)S.c=[S.e=0];else{if(S.e=i,S.c=[],u=(i+1)%LOG_BASE,0>i&&(u+=LOG_BASE),g>u){for(u&&S.c.push(+h.slice(0,u)),g-=LOG_BASE;g>u;)S.c.push(+h.slice(u,u+=LOG_BASE));h=h.slice(u),u=LOG_BASE-h.length}else u-=g;for(;u--;h+="0");S.c.push(+h)}else S.c=[S.e=0];a=0}function n(e,n,r,o){var i,u,f,s,l,a,g,h=e.indexOf("."),S=p,E=A;for(37>r&&(e=e.toLowerCase()),h>=0&&(f=v,v=0,e=e.replace(".",""),g=new t(r),l=g.pow(e.length-h),v=f,g.c=toBaseOut(toFixedPoint(coeffToString(l.c),l.e),10,n),g.e=g.c.length),a=toBaseOut(e,r,n),u=f=a.length;0==a[--f];a.pop());if(!a[0])return"0";if(0>h?--u:(l.c=a,l.e=u,l.s=o,l=c(l,g,S,E,n),a=l.c,s=l.r,u=l.e),i=u+S+1,h=a[i],f=n/2,s=s||0>i||null!=a[i+1],s=4>E?(null!=h||s)&&(0==E||E==(l.s<0?3:2)):h>f||h==f&&(4==E||s||6==E&&1&a[i-1]||E==(l.s<0?8:7)),1>i||!a[0])e=s?toFixedPoint("1",-S):"0";else{if(a.length=i,s)for(--n;++a[--i]>n;)a[i]=0,i||(++u,a=[1].concat(a));for(f=a.length;!a[--f];);for(h=0,e="";f>=h;e+=ALPHABET.charAt(a[h++]));e=toFixedPoint(e,u)}return e}function r(e,n,r,o){var i,u,f,c,l;if(r=null!=r&&b(r,0,8,o,roundingMode)?0|r:A,!e.c)return e.toString();if(i=e.c[0],f=e.e,null==n)l=coeffToString(e.c),l=19==o||24==o&&S>=f?toExponential(l,f):toFixedPoint(l,f);else if(e=s(new t(e),n,r),u=e.e,l=coeffToString(e.c),c=l.length,19==o||24==o&&(u>=n||S>=u)){for(;n>c;l+="0",c++);l=toExponential(l,u)}else if(n-=f,l=toFixedPoint(l,u),u+1>c){if(--n>0)for(l+=".";n--;l+="0");}else if(n+=u-c,n>0)for(u+1==c&&(l+=".");n--;l+="0");return e.s<0&&i?"-"+l:l}function o(e,n){var r,o,i=0;for(isArray(e[0])&&(e=e[0]),r=new t(e[0]);++i<e.length;){if(o=new t(e[i]),!o.s){r=o;break}n.call(r,o)&&(r=o)}return r}function i(e,t,n,r,o){return(t>e||e>n||e!=truncate(e))&&f(r,(o||"decimal places")+(t>e||e>n?" out of range":" not an integer"),e),!0}function u(e,t,n){for(var r=1,o=t.length;!t[--o];t.pop());for(o=t[0];o>=10;o/=10,r++);return(n=r+n*LOG_BASE-1)>d?e.c=e.e=null:m>n?e.c=[e.e=0]:(e.e=n,e.c=t),e}function f(e,t,n){var r=new Error(["new BigNumber","cmp","config","div","divToInt","eq","gt","gte","lt","lte","minus","mod","plus","precision","random","round","shift","times","toDigits","toExponential","toFixed","toFormat","toFraction","pow","toPrecision","toString","BigNumber"][e]+"() "+t+": "+n);throw r.name="BigNumber Error",a=0,r}function s(e,t,n,r){var o,i,u,f,s,c,l,a=e.c,g=POWS_TEN;if(a){e:{for(o=1,f=a[0];f>=10;f/=10,o++);if(i=t-o,0>i)i+=LOG_BASE,u=t,s=a[c=0],l=s/g[o-u-1]%10|0;else if(c=mathceil((i+1)/LOG_BASE),c>=a.length){if(!r)break e;for(;a.length<=c;a.push(0));s=l=0,o=1,i%=LOG_BASE,u=i-LOG_BASE+1}else{for(s=f=a[c],o=1;f>=10;f/=10,o++);i%=LOG_BASE,u=i-LOG_BASE+o,l=0>u?0:s/g[o-u-1]%10|0}if(r=r||0>t||null!=a[c+1]||(0>u?s:s%g[o-u-1]),r=4>n?(l||r)&&(0==n||n==(e.s<0?3:2)):l>5||5==l&&(4==n||r||6==n&&(i>0?u>0?s/g[o-u]:0:a[c-1])%10&1||n==(e.s<0?8:7)),1>t||!a[0])return a.length=0,r?(t-=e.e+1,a[0]=g[(LOG_BASE-t%LOG_BASE)%LOG_BASE],e.e=-t||0):a[0]=e.e=0,e;if(0==i?(a.length=c,f=1,c--):(a.length=c+1,f=g[LOG_BASE-i],a[c]=u>0?mathfloor(s/g[o-u]%g[u])*f:0),r)for(;;){if(0==c){for(i=1,u=a[0];u>=10;u/=10,i++);for(u=a[0]+=f,f=1;u>=10;u/=10,f++);i!=f&&(e.e++,a[0]==BASE&&(a[0]=1));break}if(a[c]+=f,a[c]!=BASE)break;a[c--]=0,f=1}for(i=a.length;0===a[--i];a.pop());}e.e>d?e.c=e.e=null:e.e<m&&(e.c=[e.e=0])}return e}var c,l,a=0,g=t.prototype,h=new t(1),p=20,A=4,S=-7,E=21,m=-1e7,d=1e7,B=!0,b=i,O=!1,_=1,v=0,w={decimalSeparator:".",groupSeparator:",",groupSize:3,secondaryGroupSize:0,fractionGroupSeparator:" ",fractionGroupSize:0};return t.another=constructorFactory,t.ROUND_UP=0,t.ROUND_DOWN=1,t.ROUND_CEIL=2,t.ROUND_FLOOR=3,t.ROUND_HALF_UP=4,t.ROUND_HALF_DOWN=5,t.ROUND_HALF_EVEN=6,t.ROUND_HALF_CEIL=7,t.ROUND_HALF_FLOOR=8,t.EUCLID=9,t.config=t.set=function(){var e,t,n=0,r={},o=arguments,u=o[0],s=u&&"object"==typeof u?function(){return u.hasOwnProperty(t)?null!=(e=u[t]):void 0}:function(){return o.length>n?null!=(e=o[n++]):void 0};return s(t="DECIMAL_PLACES")&&b(e,0,MAX,2,t)&&(p=0|e),r[t]=p,s(t="ROUNDING_MODE")&&b(e,0,8,2,t)&&(A=0|e),r[t]=A,s(t="EXPONENTIAL_AT")&&(isArray(e)?b(e[0],-MAX,0,2,t)&&b(e[1],0,MAX,2,t)&&(S=0|e[0],E=0|e[1]):b(e,-MAX,MAX,2,t)&&(S=-(E=0|(0>e?-e:e)))),r[t]=[S,E],s(t="RANGE")&&(isArray(e)?b(e[0],-MAX,-1,2,t)&&b(e[1],1,MAX,2,t)&&(m=0|e[0],d=0|e[1]):b(e,-MAX,MAX,2,t)&&(0|e?m=-(d=0|(0>e?-e:e)):B&&f(2,t+" cannot be zero",e))),r[t]=[m,d],s(t="ERRORS")&&(e===!!e||1===e||0===e?(a=0,b=(B=!!e)?i:intValidatorNoErrors):B&&f(2,t+notBool,e)),r[t]=B,s(t="CRYPTO")&&(e===!0||e===!1||1===e||0===e?e?(e="undefined"==typeof crypto,!e&&crypto&&(crypto.getRandomValues||crypto.randomBytes)?O=!0:B?f(2,"crypto unavailable",e?void 0:crypto):O=!1):O=!1:B&&f(2,t+notBool,e)),r[t]=O,s(t="MODULO_MODE")&&b(e,0,9,2,t)&&(_=0|e),r[t]=_,s(t="POW_PRECISION")&&b(e,0,MAX,2,t)&&(v=0|e),r[t]=v,s(t="FORMAT")&&("object"==typeof e?w=e:B&&f(2,t+" not an object",e)),r[t]=w,r},t.max=function(){return o(arguments,g.lt)},t.min=function(){return o(arguments,g.gt)},t.random=function(){var e=9007199254740992,n=Math.random()*e&2097151?function(){return mathfloor(Math.random()*e)}:function(){return 8388608*(1073741824*Math.random()|0)+(8388608*Math.random()|0)};return function(e){var r,o,i,u,s,c=0,l=[],a=new t(h);if(e=null!=e&&b(e,0,MAX,14)?0|e:p,u=mathceil(e/LOG_BASE),O)if(crypto.getRandomValues){for(r=crypto.getRandomValues(new Uint32Array(u*=2));u>c;)s=131072*r[c]+(r[c+1]>>>11),s>=9e15?(o=crypto.getRandomValues(new Uint32Array(2)),r[c]=o[0],r[c+1]=o[1]):(l.push(s%1e14),c+=2);c=u/2}else if(crypto.randomBytes){for(r=crypto.randomBytes(u*=7);u>c;)s=281474976710656*(31&r[c])+1099511627776*r[c+1]+4294967296*r[c+2]+16777216*r[c+3]+(r[c+4]<<16)+(r[c+5]<<8)+r[c+6],s>=9e15?crypto.randomBytes(7).copy(r,c):(l.push(s%1e14),c+=7);c=u/7}else O=!1,B&&f(14,"crypto unavailable",crypto);if(!O)for(;u>c;)s=n(),9e15>s&&(l[c++]=s%1e14);for(u=l[--c],e%=LOG_BASE,u&&e&&(s=POWS_TEN[LOG_BASE-e],l[c]=mathfloor(u/s)*s);0===l[c];l.pop(),c--);if(0>c)l=[i=0];else{for(i=-1;0===l[0];l.splice(0,1),i-=LOG_BASE);for(c=1,s=l[0];s>=10;s/=10,c++);LOG_BASE>c&&(i-=LOG_BASE-c)}return a.e=i,a.c=l,a}}(),c=function(){function e(e,t,n){var r,o,i,u,f=0,s=e.length,c=t%SQRT_BASE,l=t/SQRT_BASE|0;for(e=e.slice();s--;)i=e[s]%SQRT_BASE,u=e[s]/SQRT_BASE|0,r=l*i+u*c,o=c*i+r%SQRT_BASE*SQRT_BASE+f,f=(o/n|0)+(r/SQRT_BASE|0)+l*u,e[s]=o%n;return f&&(e=[f].concat(e)),e}function n(e,t,n,r){var o,i;if(n!=r)i=n>r?1:-1;else for(o=i=0;n>o;o++)if(e[o]!=t[o]){i=e[o]>t[o]?1:-1;break}return i}function r(e,t,n,r){for(var o=0;n--;)e[n]-=o,o=e[n]<t[n]?1:0,e[n]=o*r+e[n]-t[n];for(;!e[0]&&e.length>1;e.splice(0,1));}return function(o,i,u,f,c){var l,a,g,h,p,A,S,E,m,d,B,b,O,_,v,w,N,y=o.s==i.s?1:-1,L=o.c,G=i.c;if(!(L&&L[0]&&G&&G[0]))return new t(o.s&&i.s&&(L?!G||L[0]!=G[0]:G)?L&&0==L[0]||!G?0*y:y/0:NaN);for(E=new t(y),m=E.c=[],a=o.e-i.e,y=u+a+1,c||(c=BASE,a=bitFloor(o.e/LOG_BASE)-bitFloor(i.e/LOG_BASE),y=y/LOG_BASE|0),g=0;G[g]==(L[g]||0);g++);if(G[g]>(L[g]||0)&&a--,0>y)m.push(1),h=!0;else{for(_=L.length,w=G.length,g=0,y+=2,p=mathfloor(c/(G[0]+1)),p>1&&(G=e(G,p,c),L=e(L,p,c),w=G.length,_=L.length),O=w,d=L.slice(0,w),B=d.length;w>B;d[B++]=0);N=G.slice(),N=[0].concat(N),v=G[0],G[1]>=c/2&&v++;do{if(p=0,l=n(G,d,w,B),0>l){if(b=d[0],w!=B&&(b=b*c+(d[1]||0)),p=mathfloor(b/v),p>1)for(p>=c&&(p=c-1),A=e(G,p,c),S=A.length,B=d.length;1==n(A,d,S,B);)p--,r(A,S>w?N:G,S,c),S=A.length,l=1;else 0==p&&(l=p=1),A=G.slice(),S=A.length;if(B>S&&(A=[0].concat(A)),r(d,A,B,c),B=d.length,-1==l)for(;n(G,d,w,B)<1;)p++,r(d,B>w?N:G,B,c),B=d.length}else 0===l&&(p++,d=[0]);m[g++]=p,d[0]?d[B++]=L[O]||0:(d=[L[O]],B=1)}while((O++<_||null!=d[0])&&y--);h=null!=d[0],m[0]||m.splice(0,1)}if(c==BASE){for(g=1,y=m[0];y>=10;y/=10,g++);s(E,u+(E.e=g+a*LOG_BASE-1)+1,f,h)}else E.e=a,E.r=+h;return E}}(),l=function(){var e=/^(-?)0([xbo])(?=\w[\w.]*$)/i,n=/^([^.]+)\.$/,r=/^\.([^.]+)$/,o=/^-?(Infinity|NaN)$/,i=/^\s*\+(?=[\w.])|^\s+|\s+$/g;return function(u,s,c,l){var g,h=c?s:s.replace(i,"");if(o.test(h))u.s=isNaN(h)?null:0>h?-1:1;else{if(!c&&(h=h.replace(e,function(e,t,n){return g="x"==(n=n.toLowerCase())?16:"b"==n?2:8,l&&l!=g?e:t}),l&&(g=l,h=h.replace(n,"$1").replace(r,"0.$1")),s!=h))return new t(h,g);B&&f(a,"not a"+(l?" base "+l:"")+" number",s),u.s=null}u.c=u.e=null,a=0}}(),g.absoluteValue=g.abs=function(){var e=new t(this);return e.s<0&&(e.s=1),e},g.ceil=function(){return s(new t(this),this.e+1,2)},g.comparedTo=g.cmp=function(e,n){return a=1,compare(this,new t(e,n))},g.decimalPlaces=g.dp=function(){var e,t,n=this.c;if(!n)return null;if(e=((t=n.length-1)-bitFloor(this.e/LOG_BASE))*LOG_BASE,t=n[t])for(;t%10==0;t/=10,e--);return 0>e&&(e=0),e},g.dividedBy=g.div=function(e,n){return a=3,c(this,new t(e,n),p,A)},g.dividedToIntegerBy=g.divToInt=function(e,n){return a=4,c(this,new t(e,n),0,1)},g.equals=g.eq=function(e,n){return a=5,0===compare(this,new t(e,n))},g.floor=function(){return s(new t(this),this.e+1,3)},g.greaterThan=g.gt=function(e,n){return a=6,compare(this,new t(e,n))>0},g.greaterThanOrEqualTo=g.gte=function(e,n){return a=7,1===(n=compare(this,new t(e,n)))||0===n},g.isFinite=function(){return!!this.c},g.isInteger=g.isInt=function(){return!!this.c&&bitFloor(this.e/LOG_BASE)>this.c.length-2},g.isNaN=function(){return!this.s},g.isNegative=g.isNeg=function(){return this.s<0},g.isZero=function(){return!!this.c&&0==this.c[0]},g.lessThan=g.lt=function(e,n){return a=8,compare(this,new t(e,n))<0},g.lessThanOrEqualTo=g.lte=function(e,n){return a=9,-1===(n=compare(this,new t(e,n)))||0===n},g.minus=g.sub=function(e,n){var r,o,i,f,s=this,c=s.s;if(a=10,e=new t(e,n),n=e.s,!c||!n)return new t(NaN);if(c!=n)return e.s=-n,s.plus(e);var l=s.e/LOG_BASE,g=e.e/LOG_BASE,h=s.c,p=e.c;if(!l||!g){if(!h||!p)return h?(e.s=-n,e):new t(p?s:NaN);if(!h[0]||!p[0])return p[0]?(e.s=-n,e):new t(h[0]?s:3==A?-0:0)}if(l=bitFloor(l),g=bitFloor(g),h=h.slice(),c=l-g){for((f=0>c)?(c=-c,i=h):(g=l,i=p),i.reverse(),n=c;n--;i.push(0));i.reverse()}else for(o=(f=(c=h.length)<(n=p.length))?c:n,c=n=0;o>n;n++)if(h[n]!=p[n]){f=h[n]<p[n];break}if(f&&(i=h,h=p,p=i,e.s=-e.s),n=(o=p.length)-(r=h.length),n>0)for(;n--;h[r++]=0);for(n=BASE-1;o>c;){if(h[--o]<p[o]){for(r=o;r&&!h[--r];h[r]=n);--h[r],h[o]+=BASE}h[o]-=p[o]}for(;0==h[0];h.splice(0,1),--g);return h[0]?u(e,h,g):(e.s=3==A?-1:1,e.c=[e.e=0],e)},g.modulo=g.mod=function(e,n){var r,o,i=this;return a=11,e=new t(e,n),!i.c||!e.s||e.c&&!e.c[0]?new t(NaN):!e.c||i.c&&!i.c[0]?new t(i):(9==_?(o=e.s,e.s=1,r=c(i,e,0,3),e.s=o,r.s*=o):r=c(i,e,0,_),i.minus(r.times(e)))},g.negated=g.neg=function(){var e=new t(this);return e.s=-e.s||null,e},g.plus=g.add=function(e,n){var r,o=this,i=o.s;if(a=12,e=new t(e,n),n=e.s,!i||!n)return new t(NaN);if(i!=n)return e.s=-n,o.minus(e);var f=o.e/LOG_BASE,s=e.e/LOG_BASE,c=o.c,l=e.c;if(!f||!s){if(!c||!l)return new t(i/0);if(!c[0]||!l[0])return l[0]?e:new t(c[0]?o:0*i)}if(f=bitFloor(f),s=bitFloor(s),c=c.slice(),i=f-s){for(i>0?(s=f,r=l):(i=-i,r=c),r.reverse();i--;r.push(0));r.reverse()}for(i=c.length,n=l.length,0>i-n&&(r=l,l=c,c=r,n=i),i=0;n;)i=(c[--n]=c[n]+l[n]+i)/BASE|0,c[n]=BASE===c[n]?0:c[n]%BASE;return i&&(c=[i].concat(c),++s),u(e,c,s)},g.precision=g.sd=function(e){var t,n,r=this,o=r.c;if(null!=e&&e!==!!e&&1!==e&&0!==e&&(B&&f(13,"argument"+notBool,e),e!=!!e&&(e=null)),!o)return null;if(n=o.length-1,t=n*LOG_BASE+1,n=o[n]){for(;n%10==0;n/=10,t--);for(n=o[0];n>=10;n/=10,t++);}return e&&r.e+1>t&&(t=r.e+1),t},g.round=function(e,n){var r=new t(this);return(null==e||b(e,0,MAX,15))&&s(r,~~e+this.e+1,null!=n&&b(n,0,8,15,roundingMode)?0|n:A),r},g.shift=function(e){var n=this;return b(e,-MAX_SAFE_INTEGER,MAX_SAFE_INTEGER,16,"argument")?n.times("1e"+truncate(e)):new t(n.c&&n.c[0]&&(-MAX_SAFE_INTEGER>e||e>MAX_SAFE_INTEGER)?n.s*(0>e?0:1/0):n)},g.squareRoot=g.sqrt=function(){var e,n,r,o,i,u=this,f=u.c,l=u.s,a=u.e,g=p+4,h=new t("0.5");if(1!==l||!f||!f[0])return new t(!l||0>l&&(!f||f[0])?NaN:f?u:1/0);if(l=Math.sqrt(+u),0==l||l==1/0?(n=coeffToString(f),(n.length+a)%2==0&&(n+="0"),l=Math.sqrt(n),a=bitFloor((a+1)/2)-(0>a||a%2),l==1/0?n="1e"+a:(n=l.toExponential(),n=n.slice(0,n.indexOf("e")+1)+a),r=new t(n)):r=new t(l+""),r.c[0])for(a=r.e,l=a+g,3>l&&(l=0);;)if(i=r,r=h.times(i.plus(c(u,i,g,1))),coeffToString(i.c).slice(0,l)===(n=coeffToString(r.c)).slice(0,l)){if(r.e<a&&--l,n=n.slice(l-3,l+1),"9999"!=n&&(o||"4999"!=n)){(!+n||!+n.slice(1)&&"5"==n.charAt(0))&&(s(r,r.e+p+2,1),e=!r.times(r).eq(u));break}if(!o&&(s(i,i.e+p+2,0),i.times(i).eq(u))){r=i;break}g+=4,l+=4,o=1}return s(r,r.e+p+1,A,e)},g.times=g.mul=function(e,n){var r,o,i,f,s,c,l,g,h,p,A,S,E,m,d,B=this,b=B.c,O=(a=17,e=new t(e,n)).c;if(!(b&&O&&b[0]&&O[0]))return!B.s||!e.s||b&&!b[0]&&!O||O&&!O[0]&&!b?e.c=e.e=e.s=null:(e.s*=B.s,b&&O?(e.c=[0],e.e=0):e.c=e.e=null),e;for(o=bitFloor(B.e/LOG_BASE)+bitFloor(e.e/LOG_BASE),e.s*=B.s,l=b.length,p=O.length,p>l&&(E=b,b=O,O=E,i=l,l=p,p=i),i=l+p,E=[];i--;E.push(0));for(m=BASE,d=SQRT_BASE,i=p;--i>=0;){for(r=0,A=O[i]%d,S=O[i]/d|0,s=l,f=i+s;f>i;)g=b[--s]%d,h=b[s]/d|0,c=S*g+h*A,g=A*g+c%d*d+E[f]+r,r=(g/m|0)+(c/d|0)+S*h,E[f--]=g%m;E[f]=r}return r?++o:E.splice(0,1),u(e,E,o)},g.toDigits=function(e,n){var r=new t(this);return e=null!=e&&b(e,1,MAX,18,"precision")?0|e:null,n=null!=n&&b(n,0,8,18,roundingMode)?0|n:A,e?s(r,e,n):r},g.toExponential=function(e,t){return r(this,null!=e&&b(e,0,MAX,19)?~~e+1:null,t,19)},g.toFixed=function(e,t){return r(this,null!=e&&b(e,0,MAX,20)?~~e+this.e+1:null,t,20)},g.toFormat=function(e,t){var n=r(this,null!=e&&b(e,0,MAX,21)?~~e+this.e+1:null,t,21);if(this.c){var o,i=n.split("."),u=+w.groupSize,f=+w.secondaryGroupSize,s=w.groupSeparator,c=i[0],l=i[1],a=this.s<0,g=a?c.slice(1):c,h=g.length;if(f&&(o=u,u=f,f=o,h-=o),u>0&&h>0){for(o=h%u||u,c=g.substr(0,o);h>o;o+=u)c+=s+g.substr(o,u);f>0&&(c+=s+g.slice(o)),a&&(c="-"+c)}n=l?c+w.decimalSeparator+((f=+w.fractionGroupSize)?l.replace(new RegExp("\\d{"+f+"}\\B","g"),"$&"+w.fractionGroupSeparator):l):c}return n},g.toFraction=function(e){var n,r,o,i,u,l,a,g,p,S=B,E=this,m=E.c,b=new t(h),O=r=new t(h),_=a=new t(h);if(null!=e&&(B=!1,l=new t(e),B=S,(!(S=l.isInt())||l.lt(h))&&(B&&f(22,"max denominator "+(S?"out of range":"not an integer"),e),e=!S&&l.c&&s(l,l.e+1,1).gte(h)?l:null)),!m)return E.toString();for(p=coeffToString(m),i=b.e=p.length-E.e-1,b.c[0]=POWS_TEN[(u=i%LOG_BASE)<0?LOG_BASE+u:u],e=!e||l.cmp(b)>0?i>0?b:O:l,u=d,d=1/0,l=new t(p),a.c[0]=0;g=c(l,b,0,1),o=r.plus(g.times(_)),1!=o.cmp(e);)r=_,_=o,O=a.plus(g.times(o=O)),a=o,b=l.minus(g.times(o=b)),l=o;return o=c(e.minus(r),_,0,1),a=a.plus(o.times(O)),r=r.plus(o.times(_)),a.s=O.s=E.s,i*=2,n=c(O,_,i,A).minus(E).abs().cmp(c(a,r,i,A).minus(E).abs())<1?[O.toString(),_.toString()]:[a.toString(),r.toString()],d=u,n},g.toNumber=function(){return+this},g.toPower=g.pow=function(e,n){var r,o,i,u=mathfloor(0>e?-e:+e),f=this;if(null!=n&&(a=23,n=new t(n)),!b(e,-MAX_SAFE_INTEGER,MAX_SAFE_INTEGER,23,"exponent")&&(!isFinite(e)||u>MAX_SAFE_INTEGER&&(e/=0)||parseFloat(e)!=e&&!(e=NaN))||0==e)return r=Math.pow(+f,e),new t(n?r%n:r);for(n?e>1&&f.gt(h)&&f.isInt()&&n.gt(h)&&n.isInt()?f=f.mod(n):(i=n,n=null):v&&(r=mathceil(v/LOG_BASE+2)),o=new t(h);;){if(u%2){if(o=o.times(f),!o.c)break;r?o.c.length>r&&(o.c.length=r):n&&(o=o.mod(n))}if(u=mathfloor(u/2),!u)break;f=f.times(f),r?f.c&&f.c.length>r&&(f.c.length=r):n&&(f=f.mod(n))}return n?o:(0>e&&(o=h.div(o)),i?o.mod(i):r?s(o,v,A):o)},g.toPrecision=function(e,t){return r(this,null!=e&&b(e,1,MAX,24,"precision")?0|e:null,t,24)},g.toString=function(e){var t,r=this,o=r.s,i=r.e;return null===i?o?(t="Infinity",0>o&&(t="-"+t)):t="NaN":(t=coeffToString(r.c),t=null!=e&&b(e,2,64,25,"base")?n(toFixedPoint(t,i),0|e,10,o):S>=i||i>=E?toExponential(t,i):toFixedPoint(t,i),0>o&&r.c[0]&&(t="-"+t)),t},g.truncated=g.trunc=function(){return s(new t(this),this.e+1,1)},g.valueOf=g.toJSON=function(){var e,t=this,n=t.e;return null===n?t.toString():(e=coeffToString(t.c),e=S>=n||n>=E?toExponential(e,n):toFixedPoint(e,n),t.s<0?"-"+e:e)},g.isBigNumber=!0,null!=e&&t.config(e),t}function bitFloor(e){var t=0|e;return e>0||e===t?t:t-1}function coeffToString(e){for(var t,n,r=1,o=e.length,i=e[0]+"";o>r;){for(t=e[r++]+"",n=LOG_BASE-t.length;n--;t="0"+t);i+=t}for(o=i.length;48===i.charCodeAt(--o););return i.slice(0,o+1||1)}function compare(e,t){var n,r,o=e.c,i=t.c,u=e.s,f=t.s,s=e.e,c=t.e;if(!u||!f)return null;if(n=o&&!o[0],r=i&&!i[0],n||r)return n?r?0:-f:u;if(u!=f)return u;if(n=0>u,r=s==c,!o||!i)return r?0:!o^n?1:-1;if(!r)return s>c^n?1:-1;for(f=(s=o.length)<(c=i.length)?s:c,u=0;f>u;u++)if(o[u]!=i[u])return o[u]>i[u]^n?1:-1;return s==c?0:s>c^n?1:-1}function intValidatorNoErrors(e,t,n){return(e=truncate(e))>=t&&n>=e}function isArray(e){return"[object Array]"==Object.prototype.toString.call(e)}function toBaseOut(e,t,n){for(var r,o,i=[0],u=0,f=e.length;f>u;){for(o=i.length;o--;i[o]*=t);for(i[r=0]+=ALPHABET.indexOf(e.charAt(u++));r<i.length;r++)i[r]>n-1&&(null==i[r+1]&&(i[r+1]=0),i[r+1]+=i[r]/n|0,i[r]%=n)}return i.reverse()}function toExponential(e,t){return(e.length>1?e.charAt(0)+"."+e.slice(1):e)+(0>t?"e":"e+")+t}function toFixedPoint(e,t){var n,r;if(0>t){for(r="0.";++t;r+="0");e=r+e}else if(n=e.length,++t>n){for(r="0",t-=n;--t;r+="0");e+=r}else n>t&&(e=e.slice(0,t)+"."+e.slice(t));return e}function truncate(e){return e=parseFloat(e),0>e?mathceil(e):mathfloor(e)}function json_parse(e){"use strict";var t={strict:!1,storeAsString:!1};void 0!==e&&null!==e&&(e.strict===!0&&(t.strict=!0),e.storeAsString===!0&&(t.storeAsString=!0));var n,r,o,i,u={'"':'"',"\\":"\\","/":"/",b:"\b",f:"\f",n:"\n",r:"\r",t:" "},f=function(e){throw{name:"SyntaxError",message:e,at:n,text:o}},s=function(e){return e&&e!==r&&f("Expected '"+e+"' instead of '"+r+"'"),r=o.charAt(n),n+=1,r},c=function(){var e,n="";for("-"===r&&(n="-",s("-"));r>="0"&&"9">=r;)n+=r,s();if("."===r)for(n+=".";s()&&r>="0"&&"9">=r;)n+=r;if("e"===r||"E"===r)for(n+=r,s(),("-"===r||"+"===r)&&(n+=r,s());r>="0"&&"9">=r;)n+=r,s();return e=+n,isFinite(e)?(null==BigNumber&&(BigNumber=require("bignumber.js")),n.length>15?t.storeAsString===!0?n:new BigNumber(n):e):void f("Bad number")},l=function(){var e,t,n,o="";if('"'===r)for(;s();){if('"'===r)return s(),o;if("\\"===r)if(s(),"u"===r){for(n=0,t=0;4>t&&(e=parseInt(s(),16),isFinite(e));t+=1)n=16*n+e;o+=String.fromCharCode(n)}else{if("string"!=typeof u[r])break;o+=u[r]}else o+=r}f("Bad string")},a=function(){for(;r&&" ">=r;)s()},g=function(){switch(r){case"t":return s("t"),s("r"),s("u"),s("e"),!0;case"f":return s("f"),s("a"),s("l"),s("s"),s("e"),!1;case"n":return s("n"),s("u"),s("l"),s("l"),null}f("Unexpected '"+r+"'")},h=function(){var e=[];if("["===r){if(s("["),a(),"]"===r)return s("]"),e;for(;r;){if(e.push(i()),a(),"]"===r)return s("]"),e;s(","),a()}}f("Bad array")},p=function(){var e,n={};if("{"===r){if(s("{"),a(),"}"===r)return s("}"),n;for(;r;){if(e=l(),a(),s(":"),t.strict===!0&&Object.hasOwnProperty.call(n,e)&&f('Duplicate key "'+e+'"'),n[e]=i(),a(),"}"===r)return s("}"),n;s(","),a()}}f("Bad object")};return i=function(){switch(a(),r){case"{":return p();case"[":return h();case'"':return l();case"-":return c();default:return r>="0"&&"9">=r?c():g()}},function(e,t){var u;return o=e+"",n=0,r=" ",u=i(),a(),r&&f("Syntax error"),"function"==typeof t?function s(e,n){var r,o=e[n];return o&&"object"==typeof o&&Object.keys(o).forEach(function(e){r=s(o,e),void 0!==r?o[e]=r:delete o[e]}),t.call(e,n,o)}({"":u},""):u}}function f(e){return 10>e?"0"+e:e}function quote(e){return escapable.lastIndex=0,escapable.test(e)?'"'+e.replace(escapable,function(e){var t=meta[e];return"string"==typeof t?t:"\\u"+("0000"+e.charCodeAt(0).toString(16)).slice(-4)})+'"':'"'+e+'"'}function str(e,t){var n,r,o,i,u,f=gap,s=t[e],c=null!=s&&(s instanceof BigNumber||s.isBigNumber);switch(s&&"object"==typeof s&&"function"==typeof s.toJSON&&(s=s.toJSON(e)),"function"==typeof rep&&(s=rep.call(t,e,s)),typeof s){case"string":return c?s:quote(s);case"number":return isFinite(s)?String(s):"null";case"boolean":case"null":return String(s);case"object":if(!s)return"null";if(gap+=indent,u=[],"[object Array]"===Object.prototype.toString.apply(s)){for(i=s.length,n=0;i>n;n+=1)u[n]=str(n,s)||"null";return o=0===u.length?"[]":gap?"[\n"+gap+u.join(",\n"+gap)+"\n"+f+"]":"["+u.join(",")+"]",gap=f,o}if(rep&&"object"==typeof rep)for(i=rep.length,n=0;i>n;n+=1)"string"==typeof rep[n]&&(r=rep[n],o=str(r,s),o&&u.push(quote(r)+(gap?": ":":")+o));else Object.keys(s).forEach(function(e){var t=str(e,s);t&&u.push(quote(e)+(gap?": ":":")+t)});return o=0===u.length?"{}":gap?"{\n"+gap+u.join(",\n"+gap)+"\n"+f+"}":"{"+u.join(",")+"}",gap=f,o}}var BigNumber,isNumeric=/^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i,mathceil=Math.ceil,mathfloor=Math.floor,notBool=" not a boolean or binary digit",roundingMode="rounding mode",tooManyDigits="number type has more than 15 significant digits",ALPHABET="0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_",BASE=1e14,LOG_BASE=14,MAX_SAFE_INTEGER=9007199254740991,POWS_TEN=[1,10,100,1e3,1e4,1e5,1e6,1e7,1e8,1e9,1e10,1e11,1e12,1e13],SQRT_BASE=1e7,MAX=1e9;BigNumber=constructorFactory(),BigNumber["default"]=BigNumber.BigNumber=BigNumber;var jso={},cx=/[\u0000\u00ad\u0600-\u0604\u070f\u17b4\u17b5\u200c-\u200f\u2028-\u202f\u2060-\u206f\ufeff\ufff0-\uffff]/g,escapable=/[\\\"\x00-\x1f\x7f-\x9f\u00ad\u0600-\u0604\u070f\u17b4\u17b5\u200c-\u200f\u2028-\u202f\u2060-\u206f\ufeff\ufff0-\uffff]/g,gap,indent,meta={"\b":"\\b"," ":"\\t","\n":"\\n","\f":"\\f","\r":"\\r",'"':'\\"',"\\":"\\\\"},rep;jso.stringify=function(e,t,n){var r;if(gap="",indent="","number"==typeof n)for(r=0;n>r;r+=1)indent+=" ";else"string"==typeof n&&(indent=n);if(rep=t,t&&"function"!=typeof t&&("object"!=typeof t||"number"!=typeof t.length))throw new Error("JSON.stringify");return str("",{"":e})},jso.get=function(e){return{parse:json_parse(e),stringify:jso.stringify}};var JSON=jso.get(); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment