Last active
April 7, 2022 05:55
-
-
Save kenttw/a2d7e2bf1e6fcf14f532 to your computer and use it in GitHub Desktop.
使用 Spark 來分析 Training 資料與待預測資料分佈狀況
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
genc = pickle.loads(open(settings.DATA_FOLDER + id + "/GenderClassify.pkl").read()) | |
from urlparse import urlparse | |
def raw2feature(line): | |
r = [] | |
try : | |
dictf = ["hour" , "category_id" , "cookie_pta" , "timestamp" , "url" , "country" , "city" , "resolution" , "browser" , "browser_version" , "os" , "os_version" , "device_model" , "device_marketing" , "device_brand" , "search_keyword" , "referrer_host"] | |
parsedline = dict() | |
index = 0 | |
sps = line.strip().split(',') | |
for key in dictf : | |
parsedline[key] = sps[index] | |
index = index + 1 | |
url = parsedline['url'] | |
parsed = urlparse(url) | |
r.append(("author_" + parsed.netloc,1)) | |
r.append(("article_" + parsed.path,1)) | |
r.append(("hour_" + parsedline['hour'],1)) | |
r.append(("cat_" + parsedline['category_id'],1)) | |
r.append(("refer_" + parsedline['referrer_host'],1)) | |
r.append(("country_" + parsedline['country'],1)) | |
except : | |
pass | |
return r | |
fpath = settings.DATA_FOLDER + id +'/predict/*.csv???' | |
lines = sc.textFile(fpath.replace("s3", "s3n")) | |
pairs = lines.flatMap (raw2feature) | |
result = pairs.reduceByKey(lambda a, b: a + b) | |
allmap = result.collectAsMap() | |
fset =genc.vecz.feature_names_ | |
interskeys = set(allmap.keys()) & set(fset) | |
print "Training 資料中有 " + str(len(fset)) + " feature:" | |
print "待預測資料中有 " + str(len(allmap)) + " feature" | |
print "交集中有 " + str(len(interskeys)) + " feature" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment