Skip to content

Instantly share code, notes, and snippets.

@jstayco
jstayco / README.md
Last active September 25, 2024 19:50
Setup script for Kohya SS on macOS

MacOS (Apple Silicon)

In the terminal, run

git clone https://github.com/bmaltais/kohya_ss.git
cd kohya_ss
# Patch these files into top level/root project folder
# Then run the next command
bash ./macos.sh
@dylanmckay
dylanmckay / facebook-contact-info-summary.rb
Last active November 14, 2024 18:04
A Ruby script for collecting phone record statistics from a Facebook user data dump
#! /usr/bin/env ruby
# NOTE: Requires Ruby 2.1 or greater.
# This script can be used to parse and dump the information from
# the 'html/contact_info.htm' file in a Facebook user data ZIP download.
#
# It prints all cell phone call + SMS message + MMS records, plus a summary of each.
#
# It also dumps all of the records into CSV files inside a 'CSV' folder, that is created
@irabinovitch
irabinovitch / monitorama.md
Last active July 6, 2017 16:21 — forked from beddari/monitorama.md
#monitorama live stream timecodes
@dennybritz
dennybritz / plot_decision_boundary.py
Created September 18, 2015 16:45
plot_decision_boundary.py
# Helper function to plot a decision boundary.
# If you don't fully understand this function don't worry, it just generates the contour plot below.
def plot_decision_boundary(pred_func):
# Set min and max values and give it some padding
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = 0.01
# Generate a grid of points with distance h between them
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Predict the function value for the whole gid
@edasque
edasque / gist:1c8a8b653014ee158202
Last active February 14, 2017 17:41
HTML/JS/CSS snippet for listing dashboard in a Grafana text panel (in HTML mode)
<style type="text/css">
#dashboard_list ul {
margin:20px, 40px, 40px, 10px;
overflow:hidden;
}
#dashboard_list li {
line-height:1.5em;
float:left;
display:inline;
}
@MLnick
MLnick / JavaSparkContext.scala
Last active November 29, 2016 06:28
PySpark / Hadoop InputFormat interop
// Python RDD creation functions //
// SequenceFile converted to Text and then to String
def sequenceFileAsText(path: String) = {
implicit val kcm = ClassManifest.fromClass(classOf[Text])
implicit val fcm = ClassManifest.fromClass(classOf[SequenceFileAsTextInputFormat])
new JavaPairRDD(sc
.newAPIHadoopFile[Text, Text, SequenceFileAsTextInputFormat](path)
.map{ case (k, v) => (k.toString, v.toString) }
@granturing
granturing / HCatInputFormat.java
Last active September 28, 2016 14:24
HCatalog InputFormat wrapper to use with Spark (FYI for those finding this now, this was originally written pre-SparkSQL)
public class HCatInputFormat extends InputFormat<SerializableWritable<Writable>, HCatRecord> {
private final org.apache.hcatalog.mapreduce.HCatInputFormat input;
public HCatInputFormat() {
input = new org.apache.hcatalog.mapreduce.HCatInputFormat();
}
@Override
public RecordReader<SerializableWritable<Writable>, HCatRecord> createRecordReader(
require 'rubygems'
require 'mechanize'
FIRST_NAME = 'FIRST_NAME'
LAST_NAME = 'LAST_NAME'
PHONE = 'PHONE'
EMAIL = '[email protected]'
PARTY_SIZE = 2
SCHEDULE_RANGE = { :start_time => '19:00', :end_time => '20:30' }
@MLnick
MLnick / SparkML.scala
Last active December 20, 2015 04:09
Spark Machine Learning API Design Notes
// An Example is an observation with optional target value and features in the form of a vector of Doubles
case class Example(target: Option[Double] = None, features: Vector[Double])
// Base model API looks something like:
abstract class BaseModel(val modelSettings: Settings)
extends Serializable
with Logging {
def fit(data: RDD[Example])
@MLnick
MLnick / StreamingCMS.scala
Created February 13, 2013 15:00
Spark Streaming with CountMinSketch from Twitter Algebird
import spark.streaming.{Seconds, StreamingContext}
import spark.storage.StorageLevel
import spark.streaming.examples.twitter.TwitterInputDStream
import com.twitter.algebird._
import spark.streaming.StreamingContext._
import spark.SparkContext._
/**
* Example of using CountMinSketch monoid from Twitter's Algebird together with Spark Streaming's
* TwitterInputDStream