Skip to content

Instantly share code, notes, and snippets.

@kepler
Last active April 25, 2019 13:54
Show Gist options
  • Save kepler/6043a41ed8f3ed0be1e68c5942b99734 to your computer and use it in GitHub Desktop.
Save kepler/6043a41ed8f3ed0be1e68c5942b99734 to your computer and use it in GitHub Desktop.
Evaluation script for Task 1 of the WMT Quality Estimation challenge.
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
evaluate_wmt16_task1
~~~~~~~~~~~~~~~~~~~~
Evaluation script for Task 1 of the WMT Quality Estimation challenge.
:copyright: (c) 2016 by Fabio Kepler
:licence: MIT
Usage:
evaluate_wmt16_task1 [options] REFERENCE_FILE SUBMISSION_FILE...
evaluate_wmt16_task1 (-h | --help | --version)
Arguments:
REFERENCE_FILE path to a reference file in either a tab-separated format
<METHOD NAME> <SEGMENT NUMBER> <SEGMENT SCORE> <SEGMENT RANK>
or with one HTER score per line;
format will be detected based on the first line
SUBMISSION_FILE... list of submission files with the same format options as REFERENCE_FILE
Options:
-s --scale FACTOR FACTOR by which to scale (multiply) input scores
-v --verbose log debug messages
-q --quiet log only warning and error messages
Other:
-h --help show this help message and exit
--version show version and exit
"""
import logging
import numpy as np
import sklearn.metrics as sk
from docopt import docopt
from scipy.stats.stats import pearsonr, spearmanr, rankdata
__prog__ = "evaluate_wmt16_task1"
__title__ = 'Evaluate WMT2016 Quality Estimation Task 1'
__summary__ = 'Evaluation script for Task 1 of the WMT Quality Estimation challenge.'
__uri__ = 'https://gist.github.com/kepler/6043a41ed8f3ed0be1e68c5942b99734'
__version__ = '0.0.1'
__author__ = 'Fabio Kepler'
__email__ = '[email protected]'
__license__ = 'MIT'
__copyright__ = 'Copyright 2016 Fabio Kepler'
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
logger = logging.getLogger(__name__)
def delta_average(y_true, y_rank):
"""
Calculate the DeltaAvg score.
References: ?
:param y_true: array of reference score (not rank) of each segment.
:param y_rank: array of rank of each segment.
:return: the absolute delta average score.
"""
sorted_ranked_indexes = np.argsort(y_rank)
y_length = len(sorted_ranked_indexes)
delta_avg = 0
max_quantiles = y_length // 2
set_value = np.sum(y_true[sorted_ranked_indexes[np.arange(y_length)]]) / y_length
quantile_values = {
head: np.sum(y_true[sorted_ranked_indexes[np.arange(head)]]) / head for head in range(2, y_length)
} # cache values, since there are many that are repeatedly computed between various quantiles
for quantiles in range(2, max_quantiles + 1): # current number of quantiles
quantile_length = y_length // quantiles
quantile_sum = 0
for head in np.arange(quantile_length, quantiles * quantile_length, quantile_length):
quantile_sum += quantile_values[head]
delta_avg += quantile_sum / (quantiles - 1) - set_value
if max_quantiles > 1:
delta_avg /= (max_quantiles - 1)
else:
delta_avg = 0
return abs(delta_avg)
def parse_submission(file_name):
"""
<METHOD NAME>\t<SEGMENT NUMBER>\t<SEGMENT SCORE>\t<SEGMENT RANK>
"""
with open(file_name) as f:
sentences = [line.strip().split('\t') for line in f]
method = set(map(lambda x: x[0], sentences))
if len(method) > 1:
logger.error('There is more than one method name in file "{}": {}'.format(file_name, method))
return None, None
method = list(method)[0]
segments = np.asarray(list(map(lambda x: x[1:], sentences)), dtype=float)
if segments[:, 0].max() != segments.shape[0]:
logger.error('Wrong number of segments in file "{}": found {}, expected {}.'.format(file_name, segments.shape[0], segments[:, 0].max()))
return None, None
return method, segments
def read_hter(file_name):
with open(file_name) as f:
scores = np.array([line.strip() for line in f], dtype='float')
method = file_name
segments = np.vstack((np.arange(1, scores.shape[0] + 1),
scores,
rankdata(scores, method='ordinal'))).T
return method, segments
def read_file(file_name):
with open(file_name) as f:
if '\t' in f.readline().strip():
return parse_submission(file_name)
else:
return read_hter(file_name)
def run(arguments):
reference_file = arguments['REFERENCE_FILE']
submission_files = arguments['SUBMISSION_FILE']
reference_method, reference_segments = read_file(reference_file)
if arguments['--scale']:
reference_segments[:, 1] *= float(arguments['--scale'])
scoring_values = []
ranking_values = []
for submission in submission_files:
submission_method, submission_segments = read_file(submission)
if arguments['--scale']:
submission_segments[:, 1] *= float(arguments['--scale'])
if submission_segments[:, 1].any():
pearson = pearsonr(reference_segments[:, 1], submission_segments[:, 1])[0] # keep only main value
mae = sk.regression.mean_absolute_error(reference_segments[:, 1], submission_segments[:, 1])
rmse = np.sqrt(sk.regression.mean_squared_error(reference_segments[:, 1], submission_segments[:, 1]))
scoring_values.append((submission_method, pearson, mae, rmse))
if submission_segments[:, 2].any():
spearman = spearmanr(reference_segments[:, 2], submission_segments[:, 2])[0] # keep only main value
delta_avg = delta_average(reference_segments[:, 1], submission_segments[:, 2]) # DeltaAvg needs reference scores instead of rank
ranking_values.append((submission_method, spearman, delta_avg))
scoring = np.array(scoring_values, dtype=[('Method', 'object'), ('Pearson r', float), ('MAE', float), ('RMSE', float)])
logger.info('Scoring results:')
logger.info('{:20} {:20} {:20} {:20}'.format('Method', 'Pearson r', 'MAE', 'RMSE'))
for submission in np.sort(scoring, order=['Pearson r', 'MAE', 'RMSE']):
logger.info('{:20s} {:<20.10} {:<20.10} {:<20.10}'.format(*submission))
ranking = np.array(ranking_values, dtype=[('Method', 'object'), ('Spearman rho', float), ('DeltaAvg', float)])
logger.info('Ranking results:')
logger.info('{:20} {:20} {:20}'.format('Method', 'Spearman rho', 'DeltaAvg'))
for submission in np.sort(ranking, order=['Spearman rho', 'DeltaAvg']):
logger.info('{:20} {:<20.10} {:<20.10}'.format(*submission))
if __name__ == '__main__':
options = docopt(__doc__, argv=None, help=True, version=__version__, options_first=False)
if options['--verbose']:
logger.setLevel(level='DEBUG')
elif options['--quiet']:
logger.setLevel(level='WARNING')
run(options)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment