Last active
September 20, 2018 12:40
-
-
Save kerminz/c5681ebb4b8af4cfa5dfc819ff92ae5a to your computer and use it in GitHub Desktop.
Tensorflow.js example from blogpost on kerm.in
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
const trainX = [10.90, 30.60, 50.70, 25.10, 7.80, 42.50, 35.20, 40.40, 25.30, 12.30, 60.20, 47.80, 45.70, 27.50, 15.10, 20.10, 47.50, 32.50, 37.50, 20.00]; | |
const trainY = [2.00, 3.00, 7.00, 2.00, 2.50, 6.00, 5.00, 4.00, 6.00, 1.00, 7.00, 5.50, 7.00, 4.50, 1.50, 4.00, 9.00, 3.00, 6.50, 2.50]; | |
const m = tf.variable(tf.scalar(Math.random())); | |
const b = tf.variable(tf.scalar(Math.random())); | |
function predict(x) { | |
return tf.tidy(function() { | |
return m.mul(x).add(b); | |
}); | |
} | |
function loss(prediction, actualValues) { | |
const error = prediction.sub(actualValues).square().mean(); | |
return error; | |
} | |
const learningRate = 0.0003; | |
const optimizer = tf.train.sgd(learningRate); | |
function train() { | |
optimizer.minimize(function() { | |
const predsYs = predict(tf.tensor1d(trainX)); | |
stepLoss = loss(predsYs, tf.tensor1d(trainY)) | |
stepLoss.print(); | |
return stepLoss; | |
}); | |
} | |
for (var i=0; i < 1000; i++) { | |
train(); | |
} | |
predict(23.50).print(); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment