Skip to content

Instantly share code, notes, and snippets.

@kernelp4nic
Last active August 29, 2015 14:01
Show Gist options
  • Save kernelp4nic/21879086089b22e842b4 to your computer and use it in GitHub Desktop.
Save kernelp4nic/21879086089b22e842b4 to your computer and use it in GitHub Desktop.
Clojure learning
;
; 4clojure.com
;
; stupid keyboard:
; < >
(= [:a :b :c] (list :a :b :c) (vec '(:a :b :c)) (vector :a :b :c))
(= 20 ((hash-map :a 10, :b 20, :c 30) :b))
(= 8 ((fn add-five [x] (+ x 5)) 3))
(= ((fn d [x] (* x 2)) 2) 4)
(= ((fn [name] ( str "Hello, " name "!" )) "Dave") "Hello, Dave!")
(= '(6 7 8) (map #(+ % 5) '(1 2 3)))
(= '(6 7) filter #(> % 5) '(3 4 5 6 7))
;----------------------------------------------
;
; #19 - Write a function which returns the last element in a sequence.
;
;(= ___ [1 2 3 4 5]) 5)
(fn l [s]
( nth s (- (count s) 1 )))
;
; guilespi
;
;(fn [s]
; (let [p (rest s)]
; (if (empty? p)
; (first s)
; (recur p))))
; pcl / nikelandjelo / daowen
; (fn [x] (first (reverse x)))
; #(first (reverse %))
; reduce #(-> %2)
;----------------------------------------------
;
; #20 - Write a function which returns the second to last element from a sequence.
;(= ___ [1 2 3 4 5]) 4)
((defn l [s]
( nth s (- (count s) 2 )))
; Other solutions
;
; (fn [x] (first (rest (reverse x))))
; #(last (butlast %))
; #(nth (reverse %1) 1)
;----------------------------------------------
;
; #21 - Write a function which returns the Nth element from a sequence.
;(= (__ '(4 5 6 7) 2) 6)
(defn _nth [s at]
(loop [i 0, r s]
(if (= i at)
(first r)
(recur (+ i 1) (rest r)))))
(_nth [1 2 3] 3)
;(fn [s n]
; (first (drop n s)))
; guilespi
;
; (fn [s, index]
; (if (= index 0)
; (first s)
; (recur (rest s) (- index 1))))
;----------------------------------------------
;
; #22 - Write a function which returns the total number of elements in a sequence.
;
; (= (__ '(1 2 3 3 1)) 5)
(defn seq-length [s]
(loop [sum 0, r s]
(if (seq r)
(recur (+ sum 1) (rest r))
sum)))
; others
;
; (fn [s]
; (reduce + (map (constantly 1) s)))
;
; pcl's solution:
;
; reduce (fn [m i] (+ m 1)) 0
;----------------------------------------------
;
; #23 - Write a function which reverses a sequence.
; (= (__ [1 2 3 4 5]) [5 4 3 2 1])
(defn r [s]
"reverse the collection passed as parameter"
(into () s ))
; guilespi
; (fn [s]
; (loop [se s resto []]
; (if (empty? se)
; resto
; (recur (rest se) (cons (first se) resto)))))
;----------------------------------------------
; # 24 Write a function which returns the sum of a sequence of numbers.
; (= (__ [1 2 3]) 6)
;
(defn sum-seq [s]
(loop [sum 0, r s]
(if (seq r)
(recur (+ (first r) sum) (rest r))
sum)))
;(for [x [1 2]] (+ x 1))
;----------------------------------------------
; # 25 - Write a function which returns only the odd numbers from a sequence.
; (= (__ #{1 2 3 4 5}) '(1 3 5))
(defn get-odds [s]
(for [x s :when (odd? x)] x))
;----------------------------------------------
; # 26 - Write a function which returns the first X fibonacci numbers.
; (= (__ 6) '(1 1 2 3 5 8))
(defn fib [n]
(loop [v [1 1]]
(if (= (count v) n) v ; return vector
(recur (conj v (+ (last v) (nth v (- (count v) 2))) )))))
; guilespi
;#(take % (map (fn fib [x]
; (cond
; (= x 0) 0
; (= x 1) 1
; :else (+ (fib (- x 1)) (fib (- x 2)))
; )
; ) (iterate inc 1)))
;----------------------------------------------
; # 27 - Write a function which returns true if the given sequence is a palindrome.
; (false? (__ '(1 2 3 4 5)))
; (true? (__ "racecar"))
(defn p?[s]
; recursive palindrome detection
(cond (<= (count s) 1) true
(= (first s) (last s))
(recur (butlast (rest s)))
:else false))
;
;(defn is-palindrome? [s]
; (= (seq s) (reduce conj () s)))
;
;#(= (seq %) (reverse %))
;----------------------------------------------
; 28 - Write a function which flattens a sequence.
; forbidden: flatten
;
;(= (__ '((1 2) 3 [4 [5 6]])) '(1 2 3 4 5 6))
;(= (__ ["a" ["b"] "c"]) '("a" "b" "c"))
(defn flat [s]
(let [l (first s) r (next s)]
(concat
(if (sequential? l)
(flat l)
[l])
(when (sequential? r)
(flat r)))))
;(defn flt [s]
; (if (sequential? s)
; (mapcat flt s)
; (list s)))
; guilespi
; (fn flat [lst]
; (lazy-seq
; (if (empty? lst) lst
; (let [[x & xs] lst]
; (if (coll? x)
; (concat (flat x) (flat xs))
; (cons x (flat xs)))))))
; daowen's
; (fn flat [x] (if (coll? x) (mapcat flat x) [x]))
;----------------------------------------------
; 29 - Write a function which takes a string and returns a new string containing only the capital letters.
;(= (__ "HeLlO, WoRlD!") "HLOWRD");
;(empty? (__ "nothing"))
(defn upper [s]
(apply str (filter #(Character/isUpperCase %) s)))
; #(apply str (re-seq #"[A-Z]" %))
;----------------------------------------------
; 30 - Write a function which removes consecutive duplicates from a sequence.
;
;(= (apply str (__ "Leeeeeerrroyyy")) "Leroy")
;(= (__ [1 1 2 3 3 2 2 3]) '(1 2 3 2 3))
(defn dupes [s]
;
; The Joy of Clojure
;
; usamos "when" si no tenemos condicion de else
(defn print-down-from [x]
(when (pos? x)
(println x)
(recur (dec x))))
;
(defn sum-down-from [sum x]
(if (pos? x)
; "x" es positivo, hacemos tail rec
(recur (+ sum x) (dec x))
; "x" ya no es positivo (else) retornamos "sum"
sum))
;
(defn sum-down-from [initial-x]
; inicializamos "sum" y "x"
; cuando "recur" llama al "loop"
; estos parametros se vuelven a inicializar
; con los que "recur" pasó
(loop [sum 0, x initial-x]
(if (pos? x)
; "recur" siempre vuelve para atras
; hasta que encuentra un "loop" o un "fn"
(recur (+ sum x) (dec x))
; "sum" es el valor de retorno de todo el loop
sum)))
(defn absolute-value [x]
(if (pos? x)
x ; "then"
(- x))) ; "else"
; destructuring
; guys-whole-name -> ["Seba" "Martin" "Moreno"]
(let [[f-name m-name l-name] guys-whole-name]
(str l-name ", " f-name " " m-name))
; seq
(defn print-seq [s]
(when (seq s)
(prn (first s))
(recur (rest s))))
(defn l [s]
( nth (count s)))
; walk a macro
(use 'clojure.walk)
(macroexpand-all 'codigo)
; Factorial
(defn fact[x]
((fn [n so_far]
(if (<= n 1)
so_far
(recur (dec n) (* so_far n)))) x 1))
(defproject toto "0.1.0-SNAPSHOT"
:description "FIXME: write description"
:url "http://example.com/FIXME"
:license {:name "Eclipse Public License"
:url "http://www.eclipse.org/legal/epl-v10.html"}
:dependencies [[org.clojure/clojure "1.5.1"]])
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment