Skip to content

Instantly share code, notes, and snippets.

@kesavsivakumar
Forked from MexsonFernandes/mindwave.py
Created February 4, 2021 16:53
Show Gist options
  • Save kesavsivakumar/7b67c0cba69082f867e8674abeb6d71d to your computer and use it in GitHub Desktop.
Save kesavsivakumar/7b67c0cba69082f867e8674abeb6d71d to your computer and use it in GitHub Desktop.
Python code for data collection from Neurosky Mindwave Mobile headset device
import numpy as np
import pandas as pd
import sys
import json
import time
from telnetlib import Telnet
# Initializing the arrays required to store the data.
attention_values = np.array([])
meditation_values = np.array([])
delta_values = np.array([])
theta_values = np.array([])
lowAlpha_values = np.array([])
highAlpha_values = np.array([])
lowBeta_values = np.array([])
highBeta_values = np.array([])
lowGamma_values = np.array([])
highGamma_values = np.array([])
blinkStrength_values = np.array([])
time_array = np.array([])
tn=Telnet('localhost',13854);
start=time.clock();
i=0;
tn.write('{"enableRawOutput": true, "format": "Json"}');
outfile="null";
if len(sys.argv)>1:
outfile=sys.argv[len(sys.argv)-1];
outfptr=open(outfile,'w');
eSenseDict={'attention':0, 'meditation':0};
waveDict={'lowGamma':0, 'highGamma':0, 'highAlpha':0, 'delta':0, 'highBeta':0, 'lowAlpha':0, 'lowBeta':0, 'theta':0};
signalLevel=0;
while time.clock() - start < 30:
blinkStrength=0;
line=tn.read_until('\r');
if len(line) > 20:
timediff=time.clock()-start;
dict=json.loads(str(line));
if "poorSignalLevel" in dict:
signalLevel=dict['poorSignalLevel'];
if "blinkStrength" in dict:
blinkStrength=dict['blinkStrength'];
if "eegPower" in dict:
waveDict=dict['eegPower'];
eSenseDict=dict['eSense'];
outputstr=str(timediff)+ ", "+ str(signalLevel)+", "+str(blinkStrength)+", " + str(eSenseDict['attention']) + ", " + str(eSenseDict['meditation']) + ", "+str(waveDict['lowGamma'])+", " + str(waveDict['highGamma'])+", "+ str(waveDict['highAlpha'])+", "+str(waveDict['delta'])+", "+ str(waveDict['highBeta'])+", "+str(waveDict['lowAlpha'])+", "+str(waveDict['lowBeta'])+ ", "+str(waveDict['theta']);
time_array = np.append(time_array, [timediff]);
blinkStrength_values = np.append(blinkStrength_values, [blinkStrength]);
lowGamma_values = np.append(lowGamma_values, [waveDict['lowGamma']]);
highGamma_values = np.append(highGamma_values, [waveDict['highGamma']]);
highAlpha_values = np.append(highAlpha_values, [waveDict['highAlpha']]);
delta_values = np.append(delta_values, [waveDict['delta']]);
lowBeta_values = np.append(lowBeta_values, [waveDict['lowBeta']]);
highBeta_values = np.append(highBeta_values, [waveDict['highBeta']]);
theta_values = np.append(theta_values, [waveDict['theta']]);
lowAlpha_values = np.append(lowAlpha_values, [waveDict['lowAlpha']]);
attention_values = np.append(attention_values, [eSenseDict['attention']]);
meditation_values = np.append(meditation_values, [eSenseDict['meditation']]);
print (outputstr);
if outfile!="null":
outfptr.write(outputstr+"\n");
person_name = input('Enter the name of the person: ')
blink_label = input('Enter left or right eye blink(1 for left, 2 for right): ')
time_starting = input('When does TGC start: ')
lefty_righty = input('Is the person left-handed or right-handed: ')
time_blinking = input('The time of the blink: ')
# Data Recorded for a single person
data_row = pd.DataFrame({'Name': person_name, 'attention': [attention_values], 'meditation': [meditation_values], 'delta': [delta_values], 'theta': [theta_values], 'lowAlpha': [lowAlpha_values], 'highAlpha': [highAlpha_values], 'lowBeta': [lowBeta_values], 'highBeta': [highBeta_values],
'lowGamma':[lowGamma_values] , 'highGamma': [highGamma_values], 'blinkStrength': [blinkStrength_values], 'time': [time_array], 'LOR': blink_label})
# Reading the data stored till now
dataset = pd.read_csv('data_eeg.csv')
from numpy import nan as Nan
dataset = dataset.append(pd.Series([blink_label, person_name, [attention_values], [blinkStrength_values], [delta_values]
, [highAlpha_values], [highBeta_values], [highGamma_values], [lowAlpha_values], [lowBeta_values], [lowGamma_values], [meditation_values],
[theta_values], [time_array], time_starting, lefty_righty, time_blinking], index=['LOR', 'Name', 'attention', 'blinkStrength', 'delta', 'highAlpha', 'highBeta', 'highGamma', 'lowAlpha', 'lowBeta', 'lowGamma', 'meditation', 'theta', 'time', 'time_start', 'LTYRTY', 'time_blink']), ignore_index = True)
#Appending and storing the data in the same csv
#dataset.append(data_row)
dataset.to_csv('data_eeg.csv')
tn.close();
#outfptr.close();
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment