Created
November 18, 2016 03:54
-
-
Save keunwoochoi/c8e44c604a0e3cb8d3e147261f030f5c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def Melspectrogram(n_dft, input_shape, trainable, n_hop=None, | |
border_mode='same', logamplitude=True, sr=22050, | |
n_mels=128, fmin=0.0, fmax=None, name='melgram'): | |
if input_shape is None: | |
raise RuntimeError('specify input shape') | |
Melgram = Sequential() | |
# Prepare STFT. | |
x, STFT_magnitude = get_spectrogram_tensors(n_dft, | |
n_hop=n_hop, | |
border_mode=border_mode, | |
input_shape=input_shape, | |
logamplitude=False) | |
# output: (None, freq, time) | |
stft_model = Model(input=x, output=STFT_magnitude, name='stft') | |
stft_model = trainable | |
Melgram.add(stft_model) | |
# Convert to a proper 2D representation (ndim=4) | |
if K.image_dim_ordering() == 'th': | |
Melgram.add(Reshape((1,) + stft_model.output_shape[1:], | |
name='reshape_to_2d')) # (None, 1, freq, time) | |
else: | |
Melgram.add(Reshape(stft_model.output_shape[1:] + (1,), | |
name='reshape_to_2d')) # (None, freq, time, 1) | |
# build a Mel filter | |
mel_basis = _mel(sr, n_dft, n_mels, fmin, fmax) # (128, 1025) (mel_bin, n_freq) | |
mel_basis = np.fliplr(mel_basis) # to make it from low-f to high-freq | |
n_freq = mel_basis.shape[1] | |
if K.image_dim_ordering() == 'th': | |
mel_basis = mel_basis[:, np.newaxis, :, np.newaxis] | |
# print('th', mel_basis.shape) | |
else: | |
mel_basis = np.transpose(mel_basis, (1, 0)) | |
mel_basis = mel_basis[:, np.newaxis, np.newaxis, :] | |
# print('tf', mel_basis.shape) | |
stft2mel = Convolution2D(n_mels, n_freq, 1, border_mode='valid', bias=False, | |
name='stft2mel', weights=[mel_basis]) | |
stft2mel.trainable = trainable | |
Melgram.add(stft2mel) #output: (None, 128, 1, 375) if theano. | |
if logamplitude: | |
Melgram.add(Logam_layer()) | |
# i.e. 128ch == 128 mel-bin, for 375 time-step, therefore, | |
if K.image_dim_ordering() == 'th': | |
Melgram.add(Permute((2, 1, 3), name='ch_freq_time')) | |
else: | |
Melgram.add(Permute((1, 3, 2), name='ch_freq_time')) | |
# output dot product of them | |
return Melgram |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment