Created
July 25, 2015 19:00
-
-
Save kevin-keraudren/4449c45e246888f96368 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
def dr_toolbox(D,n_components=None): | |
""" | |
Landmark isomap dimensionality reduction method | |
This is the version implemented in | |
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html | |
Parameters | |
---------- | |
C : matrix of geodesic distances to the landmarks | |
Returns | |
------- | |
embedded_coords : embedded coordinates of the original points | |
""" | |
(n, nl) = map(float, D.shape) | |
subB = -0.5 * ( | |
D - np.array( | |
[D.mean(axis=1)]*int(nl) | |
).transpose() - np.array( | |
[D.mean(axis=0)]*int(n) | |
) + np.ones(D.shape)*D.sum() / (n * nl)) | |
subB2 = np.dot(subB.T, subB) | |
beta,alpha = np.linalg.eig(subB2) | |
val = map(np.sqrt, np.asarray(beta,dtype=complex)) | |
invVal = np.linalg.inv(np.diag(val)) | |
vec = np.dot( np.dot(subB, alpha), invVal) | |
# Computing final embedding | |
val = np.array(map(np.real,val)) | |
ind = val.argsort() | |
ind = ind[::-1] # we want decreasing order | |
val = val.take(ind) | |
vec = vec.take(ind, axis=1) | |
return vec*[map(sqrt, val)] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment